
PART 7

Designing an 
Access Project

CHAPTER 26

Building Tables in an Access Project 1447

CHAPTER 27

Building Queries in an Access Project. 1491

CHAPTER 28

Designing Forms in an Access Project 1547

CHAPTER 29

Building Reports in an Access Project 1567

 1445

C26623252.indd 1445 2/23/2007 9:52:01 PM

C26623252.indd 1446 2/23/2007 9:52:02 PM

CHAPTER 26

Building Tables in an Access Project

If you worked through the previous chapters in this book, you created all the compo-
nents and have all the knowledge necessary to produce a fully functioning desktop

application in Microsoft Offi ce Access 2007. If you built an application only for your
personal use, you might never need to learn more about advanced Offi ce Access 2007
features. But if you plan to share your application with multiple users or work with large
amounts of data, it might be time to consider building an Access project.

Unlike an Access desktop database (.accdb), an Access project does not contain any
tables or queries. When you defi ne a project, you must specify a connection to a
 Microsoft SQL Server database. The database server provides the tables and queries—
views, functions, and stored procedures—that your application will use.

As with any database design, the fi rst step in creating an Access project is building the
tables. In this chapter, you will learn how to

● Create a new project fi le by building a new database on the server

● Create a new project fi le by connecting to an existing database on the server

● Create a new table in Design view

● Select the best data type for each column

● Create check constraints to validate the data in your tables

● Defi ne a primary key for your tables

● Add indexes to your tables

● Learn how to create relationships for your tables

● Learn how to manage your relationships and tables using database diagrams

● Set options that affect how you work in table design

Creating a New Project File  . 1448

Creating a Table in Design View. . . . . . . . . . . . . . . . . . 1457

Defi ning Columns . 1459

Defi ning a Primary Key . 1470

Adding Indexes . 1471

Creating Additional Tables in Contact Tracking . . . . . 1475

Defi ning Check Constraints  . 1477

Defi ning Relationships . 1482

Setting Table Design Options . 1488

 1447

C26623252.indd 1447 2/23/2007 9:52:04 PM

Creating a New Project File
Before you can get started building a new project fi le, you need to make sure that you
can interface with an SQL Server database that can support your Access project. The fi le
extension that Access uses to store your project fi les is .adp. You must either

● Have access to SQL Server version 2000 or later and also have full Create Data-
base and Modify Database permissions, or

● Have installed Microsoft SQL Server 2005 Express Edition. See the Appendix,
“Installing Your Software,” for more information on how to download and install
SQL Server 2005 Express Edition.

Note
Although it is possible to use SQL Server 6.5 or later when creating an Access project

(.adp), many of the tools discussed in this chapter are supported only by SQL Server 2000

or later. If you do not have access to SQL Server 2000, try installing SQL Server 2005

Express Edition instead so that you can become familiar with all the design options sup-

ported by project fi les (.adp) in Access 2007.

Building a New SQL Server Database
Any Access project fi le (.adp) must be connected to an SQL Server database to store its
tables, views, functions, and stored procedures. When you create a new project fi le, you
can also create a new database. If you don’t already have a database to connect to on
the server, you need to create one. Click the Blank Database button in the middle of the
Getting Started screen, as shown in Figure 26-1. Access displays the Blank Database
task pane where you enter a name for your new database in the File Name text box and
a location to save the fi le beneath the File Name text box. You can modify the name of
this database by typing in the File Name text box. To create a new Access project fi le,
click the Browse button, also shown in Figure 26-1.

In the File New Database dialog box that appears, as shown in Figure 26-2, select the
drive and folder you want by clicking the links on the left side and browsing to your
destination folder. In this example, we selected the Development subfolder under the
Documents folder on our computer. (Remember from Chapter 2, “Exploring the New
Look of Access 2007,” we created this Development folder as a trusted location, so
Access will enable all the content.) Select Microsoft Offi ce Access Projects from the
Save As Type list to have Access create an Access project instead of the default .accdb
database fi le. Next, go to the File Name text box, and type the name of your new Access
project. Access appends an .adp extension to the fi le name for you. Name the new proj-
ect fi le ContactTracking, and click OK to return to the Getting Started screen. Finally,
click the Create button to create your project fi le.

Note
Although it is possible to use SQL Server 6.5 or later when creating an Access project

(.adp), many of the tools discussed in this chapter are supported only by SQL Server 2000

or later. If you do not have access to SQL Server 2000, try installing SQL Server 2005

Express Edition instead so that you can become familiar with all the design options sup-

ported by project fi les (.adp) in Access 2007.

C
h

ap
ter 26

1448 Chapter 26  Building Tables in an Access Project

C26623252.indd 1448 2/23/2007 9:52:04 PM

Figure 26-1  Click the Blank Database button to begin creating a new Access project.

Figure 26-2  Name the new project file in the File New Database dialog box, and select Microsoft 
Office Access Projects from the Save As Type list.

  Creating a New Project File 1449

C
h

ap
te

r
26

C26623252.indd 1449 2/23/2007 9:52:05 PM

Access displays a message box asking whether you want to connect to an existing SQL
Server database, as shown in Figure 26-3. If you click Yes, Access displays a Data Link
Properties dialog box where you enter the connection information for your existing
SQL Server database. Because we’re creating a new SQL Server database, click the No
button to continue.

Figure 26-3  Click No to create a new SQL Server database to which to connect.

Access creates the project for you and opens it. Because this is a new project, the
 Microsoft SQL Server Database Wizard opens and asks you what SQL server you want
to connect to and what you want to name your new database. If you are connected to a
large network, it might take a while for the wizard to appear because it has to search the
entire network to compile a list of all available SQL servers.

When you were working with .accdb fi les, you had all the elements of a database in one

convenient fi le. Because an .accdb fi le can stand on its own, it’s logical to refer to it as a

database. Project fi les are different. In an Access project, the actual database is composed

of all the tables, functions, views, and stored procedures that are kept on the server. Your

Access project fi le merely connects to the database to make available these objects that

are on the server, and you build the forms, reports, macros, and modules that defi ne

your application in the project fi le. SQL Server (or SQL Server 2005 Express Edition) has its

own database name, which can be different from the project fi le you create in Access. It

is important to keep this difference in mind, because when you talk about the database

in an Access project, you are actually talking about the database stored on the server.

Figure 26-4 shows the fi rst page of the Microsoft SQL Server Database Wizard. The fi rst
fi eld shows the name of the server to which you want to connect. Click the arrow to dis-
play all the servers that the wizard found. If the name of the server you want to connect
to is not listed, you can type the full name in the box instead. If you are using a copy of
SQL Server 2005 Express Edition installed on your desktop computer, select the (local)
option from the drop-down list.

In most cases, you want to select the Use Trusted Connection check box. This tells
Access that you want to connect to the server using the established Windows security
protocols (the default for SQL Server 2005 Express Edition). If you or an administrator
has decided to enforce SQL Server security using a database server login, you need to
complete the Login ID and Password fi elds using an account with valid Create Database

INSIDE OUT An Access Project Is Not a Database

When you were working with .accdb fi les, you had all the elements of a database in one

convenient fi le. Because an .accdb fi le can stand on its own, it’s logical to refer to it as a

database. Project fi les are different. In an Access project, the actual database is composed

of all the tables, functions, views, and stored procedures that are kept on the server. Your

Access project fi le merely connects to the database to make available these objects that

are on the server, and you build the forms, reports, macros, and modules that defi ne

your application in the project fi le. SQL Server (or SQL Server 2005 Express Edition) has its

own database name, which can be different from the project fi le you create in Access. It

is important to keep this difference in mind, because when you talk about the database

in an Access project, you are actually talking about the database stored on the server.

INSIDE OUT

C
h

ap
ter 26

1450 Chapter 26  Building Tables in an Access Project

C26623252.indd 1450 2/23/2007 9:52:06 PM

permissions on the server. You must clear the Use Trusted Connection check box to
enable the Login ID and Password boxes.

Figure 26-4  Choose the server connection and database name on the first page of the Microsoft 
SQL Server Database Wizard.

Access automatically generates a database name by appending SQL to the end of the
project file name you entered in the File New Database dialog box. If you want to use
a different name, you can type it. For this exercise, we will use the provided Contact-
TrackingSQL name.

Click Next to proceed. If Access discovers that the name you chose conflicts with an
existing database on the server, it suggests a new one (the same name with a number
appended to the end—such as ContactTrackingSQL2). If the wizard can establish a con-
nection to your server, you will see the page displayed in Figure 26-5. Click Finish to
close the wizard, and you are now ready to begin building your new Access project.

Figure 26-5  The wizard is ready to create the new database on the server.

  Creating a New Project File 1451

C
h

ap
te

r
26

C26623252.indd 1451 2/23/2007 9:52:06 PM

T ROUBLESHOOTING
I keep getting errors when I try to create a new database.
What am I doing wrong?

In order for Access to be able to create a new database, the following must be true:

● Access must detect a valid server on the local desktop computer or on the net-

work. If you are attempting to connect to SQL Server, check with your administra-

tor and make sure that the server is properly registered and that your computer

can link over your network to the computer on which the server resides. If you are

using SQL Server 2005 Express Edition, make sure it is fully installed and confi g-

ured and that you have started it. (See the Appendix for more information.)

● You must have Create Database permissions that can be verifi ed through a trusted

connection or by using SQL Server security. If you are connecting to SQL Server,

check with the administrator to make sure these permissions have been created

for you. On SQL Server 2005 Express Edition, these permissions should exist by

default. If you are still having trouble, try using sa as the login ID with no password

(the default System Administrator login).

Connecting to an Existing SQL Server Database
If the database has already been created for you or if you want to build a project that
connects to an existing database, the fi rst steps are similar to creating a new SQL Server
database. Click the Blank Database button in the middle of the Getting Started screen,
as shown in Figure 26-6. Access displays the Blank Database task pane where you enter
a name for your new database in the File Name text box and a location to save the fi le
beneath the File Name text box. You can modify the name of this database by typing in
the File Name text box. Next, click the Browse button, also shown in Figure 26-6.

In the File New Database dialog box that appears, as shown in Figure 26-7, select the
drive and folder you want by clicking the links on the left side and browsing to your
destination folder. In this example, we selected the Development subfolder under the
Documents folder on our computer. Select Microsoft Offi ce Access Projects from the
Save As Type list to have Access create an Access project instead of the default .accdb
database fi le. Next, go to the File Name text box, and type the name of your new Access
project. Access appends an .adp extension to the fi le name for you. For this example,
name the new project fi le ContactTracking2, and click OK to return to the Getting
Started screen. Finally, click the Create button to create your project fi le.

ROUBLESHOOTING

C
h

ap
ter 26

1452 Chapter 26  Building Tables in an Access Project

C26623252.indd 1452 2/23/2007 9:52:06 PM

Figure 26-6  Click the Blank Database button to start creating a new Access project with existing data.

Figure 26-7  Name the new project file ContactTracking2 in the File New Database dialog box.

  Creating a New Project File 1453

C
h

ap
te

r
26

C26623252.indd 1453 2/23/2007 9:52:07 PM

Access displays a message box asking whether you want to connect to an existing SQL
Server database, as shown in Figure 26-8. If you click No, Access displays the Microsoft
SQL Server Database Wizard where you can create a new SQL Server database. Because
we’re connecting to an existing SQL Server database, click the Yes button to continue.

Figure 26-8  Click Yes to connect to an existing SQL Server database.

Next, Access displays the Data Link Properties dialog box, as shown in Figure 26-9. If
you are connected to a large network, it might take a while for the dialog box to appear
because the wizard has to search the entire network for all valid servers. After the dia-
log box appears, select the server to which you want to connect from the list in the fi rst
box. If the name of the server you want to connect to is not listed, you can type the full
name in the box instead. If you are using a copy of SQL Server 2005 Express Edition
installed on your desktop computer, select the (local) option from the list.

Figure 26-9  Specify how to connect to an existing database using the Data Link Properties 
dialog box.

Note
If you followed the previous instructions to create a new project with a new database,

you can use the ContactTrackingSQL database that you created earlier.

Note
If you followed the previous instructions to create a new project with a new database,

you can use the ContactTrackingSQL database that you created earlier.

C
h

ap
ter 26

1454 Chapter 26  Building Tables in an Access Project

C26623252.indd 1454 2/23/2007 9:52:07 PM

Select Use Windows NT Integrated Security if you want to allow SQL Server to verify
your permissions through the Windows NT settings. (In this context, Windows NT
means NT 4.0, Windows 2000, Windows XP, Windows Vista, and Windows Server
2003 with SQL Server version 7.0 or later.) If you have a specific SQL Server login
ID and password assigned to you, click the Use A Specific User Name And Password
option instead, and enter them. When the server requires an SQL Server login, you can
also specify that the password is blank (which is not the same as leaving the Password
field blank), and you can ask Access to remember the login ID and password you enter.

If the database you want to connect to is already on the server, you can select the data-
base from the second list. If the database you want is not listed, it might not exist on
the server to which you have chosen to connect. Try connecting to a different server, or
check with your administrator to make sure the database you want has been created.

You can also choose to attach a database file to the server by selecting the Attach A
Database File As A Database Name option. (Note that you must have create permission
on the server you want to use.) This allows you to connect a preexisting SQL Server
master data file (.mdf) to the server and use it to build your project on. You can also use
this option to attach Microsoft Access desktop database tables (.accdb) to your server,
but the tables will be read-only. When you choose to attach a database, you must enter
the database name you want for the attached file and specify the location of the file you
want to attach. If you don’t know the exact location of the database file, you can browse
for it by clicking the Browse (...) button. This will display the dialog box shown in Fig-
ure 26-10.

Figure 26-10  Locate a master data file to attach to SQL Server using the Select SQL Server Data-
base File dialog box.

  Creating a New Project File 1455

C
h

ap
te

r
26

C26623252.indd 1455 2/23/2007 9:52:08 PM

Use the dialog box to locate the .mdf fi le you want to attach, and then click the Open
button. Access displays the path to the database fi le in the Data Link Properties dialog
box, as shown in Figure 26-11. Make sure you type a unique name for your database in
the text box above the Using The Filename text box. For example, if you are attaching
the ContactsSQL.mdf fi le, enter ContactsSQL as the database name.

Figure 26-11  You can attach a database fi le as a database name using the Data Link Properties 
dialog box.

Note
If you want to work with the tables, functions, views, and stored procedures in the

sample project fi les included on the companion CD, you will need to attach the Contacts-

SQL.mdf fi le provided on the CD to SQL Server or SQL Server 2005 Express Edition using

the preceding instructions. If you installed the sample fi les in the default C:\Microsoft

Press\Access 2007 Inside Out folder, you can also execute the Attach Contacts.bat fi le

that you’ll fi nd in the SQL subfolder. In Windows Vista, right-click the fi le, and click Run

As Administrator on the shortcut menu. If you installed the sample fi les in a different

folder, you’ll need to modify the Attach Contacts.sql and Attach Contacts.bat fi les fi rst to

point to the correct location.

When you are ready, click the Test Connection button. If Access is able to connect, it
will display a Test Connection Succeeded message. If it fails, a problem might exist

Note
If you want to work with the tables, functions, views, and stored procedures in the

sample project fi les included on the companion CD, you will need to attach the Contacts-

SQL.mdf fi le provided on the CD to SQL Server or SQL Server 2005 Express Edition using

the preceding instructions. If you installed the sample fi les in the default C:\Microsoft

Press\Access 2007 Inside Out folder, you can also execute the Attach Contacts.bat fi le

that you’ll fi nd in the SQL subfolder. In Windows Vista, right-click the fi le, and click Run

As Administrator on the shortcut menu. If you installed the sample fi les in a different

folder, you’ll need to modify the Attach Contacts.sql and Attach Contacts.bat fi les fi rst to

point to the correct location.
C

h
ap

ter 26

1456 Chapter 26  Building Tables in an Access Project

C26623252.indd 1456 2/23/2007 9:52:08 PM

with the server connections. Contact your network administrator, or consult your SQL
Server documentation for more assistance.

If you are having errors connecting to the server, see “I keep getting errors when I try to
create a new database” on page 1452. If Access informs you the server is running but it
can’t connect to your database, see “An Access Project Is Not a Database” on page 1450 for
more help.

Click OK in the Data Link Properties dialog box, and Access creates the new Access
project using existing data, as shown in Figure 26-12. You are now ready to edit the
existing database.

Figure 26-12  Here is the Navigation Pane of a new project connected to an existing database.

Creating a Table in Design View
Now that you have created a project fi le, let’s take a look at creating a table. The features
that allow you to create tables by using wizards or by entering data in a desktop appli-
cation (.accdb) do not exist in an Access project (.adp). The only method for creating
tables (other than importing them from another source or using specifi c code to create
them) is to create them in Design view.

If you are having errors connecting to the server, see “I keep getting errors when I try to
create a new database” on page

  Creating a Table in Design View 1457

C
h

ap
te

r
26

C26623252.indd 1457 2/23/2007 9:52:09 PM

Creating a new table is easy. Open the project file (ContactTracking.adp) connected to
the new database (ContactTrackingSQL) that you created earlier. On the Create tab, in
the Tables group, click the Table Design button, and a blank table opens in Design view,
as shown in Figure 26-13.

Figure 26-13  Click the Table Design button to begin creating a new table in Design view in an 
Access project.

Because the tables of an Access project are stored in SQL Server, the table design inher-
its some of the new properties and definitions supported by SQL Server. You might
notice that fields are now called columns, and instead of records you have rows. This
naming convention is similar to the design elements discussed in Article 1, “Designing
Your Database Application,” on the companion CD. Functionally, columns are the same
as fields, and rows are the same as records.

Listed horizontally are some additional properties that SQL Server uses to define the
columns in your table. You can also see properties listed on the tab control in the bot-
tom section of the window. Some of the listed properties are unavailable (they appear
dimmed) depending on the data types that you select for your columns.

C
h

ap
ter 26

1458 Chapter 26  Building Tables in an Access Project

C26623252.indd 1458 2/23/2007 9:52:09 PM

For details about column properties, see Table 26-3, “SQL Server Table Column Properties,”
on page 1468.

In Chapter 4, “Creating Your Database and Tables,” you learned how to create tables
for an Access desktop database (.accdb) by building some of the tables in the Contact-
Tracking database. Now let’s learn how to build those same tables in an Access
project (.adp).

Defi ning Columns
First, let’s build a Companies table that is similar to the tblCompanies table that you'll
fi nd in the Conrad Systems Contacts sample database (Contacts.accdb). With the table
in Design view, click the fi rst row under Column Name; type the name of the fi rst
column, CompanyID; and press Tab. Notice that Access fi lls in a default data type and
length. You’ll learn how to change this default later in this chapter. Click the arrow in
the Data Type cell or press Alt+Down Arrow to open the list of data type options, as
shown in Figure 26-14.

Figure 26-14  You can select SQL Server data types from the drop-down list of data type options.

For details about column properties, see Table 26-3, “SQL Server Table Column Properties,”

  Defi ning Columns 1459

C
h

ap
te

r
26

C26623252.indd 1459 2/23/2007 9:52:09 PM

As you learned in Chapter 4, it is a good idea to follow a sensible naming convention

when defi ning fi elds in your Access .accdb tables. One of the primary reasons for this was

so that it would be easier to interface with SQL Server later. It’s possible to convert an

existing desktop database (.accdb) to a project with connected tables, views, functions,

and stored procedures in SQL Server. If you plan your fi eld (column) names carefully, this

process happens much more smoothly.

All objects in an SQL Server database, including tables, views, functions, and stored pro-

cedures, must have names that follow a set of naming conventions called the Rules for
Identifi ers. These rules also apply to naming your columns in a table in an Access project.

(Remember, the table is actually stored in SQL Server.)

A column name can be up to 128 characters long and can include any combination

of letters, numbers, and the symbol characters @, _, #, or $. The column name must

begin with a letter, _, @, or #. The name also should not contain spaces and cannot be a

 Transact-SQL reserved word (such as Select, Alter, or Create).

Microsoft SQL Server Books Online provides an invaluable reference to all the features of

Microsoft SQL Server 2005. You can download a free copy (a set of help fi les) from

 www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx. In SQL Server
Books Online, you can fi nd a list of all the reserved words in Transact-SQL.

You should give your columns meaningful names and use the same name throughout

for a column that occurs in more than one table. You should avoid using column names

that might also match any name internal to Offi ce Access 2007, Microsoft Visual Basic, or

SQL Server. For example, all objects have a Name property, so it’s a good idea to qualify

a column containing a name. For example, use CustomerName, CompanyName, Vendor-

Name, or something similar. You should also avoid names that are the same as built-in

functions, such as Date, Time, Now, or Space.

You will see that if you type a column name that doesn’t meet the Rules for Identifi ers

criteria, the name appears in delimited brackets ([]). Delimited means that the object

name does not meet the criteria of the Rules for Identifi ers naming convention. Delimited

object names must always be encased in brackets ([]) or double quotes ("), but you can

use double quotes only if the server has been set up to accept double quotes surround-

ing identifi ers (fi eld names). When names are delimited, SQL Server can still recognize

and use them, but it must spend extra processing time converting those delimited names

to limited names that meet the criteria for the Rules for Identifi ers naming convention.

Also, whenever you refer to objects with delimited names in forms, queries, or other

procedures, you must continue to enclose them in brackets or double quotes. As you can

see, you will have an easier time building your database, and it will run more effi ciently if

you name all your objects using the Rules for Identifi ers.

INSIDE OUT Rules for Identifi ers and Column Names

As you learned in Chapter 4, it is a good idea to follow a sensible naming convention

when defi ning fi elds in your Access .accdb tables. One of the primary reasons for this was

so that it would be easier to interface with SQL Server later. It’s possible to convert an

existing desktop database (.accdb) to a project with connected tables, views, functions,

and stored procedures in SQL Server. If you plan your fi eld (column) names carefully, this

process happens much more smoothly.

All objects in an SQL Server database, including tables, views, functions, and stored pro-

cedures, must have names that follow a set of naming conventions called the Rules for
Identifi ers. These rules also apply to naming your columns in a table in an Access project.

(Remember, the table is actually stored in SQL Server.)

A column name can be up to 128 characters long and can include any combination

of letters, numbers, and the symbol characters @, _, #, or $. The column name must

begin with a letter, _, @, or #. The name also should not contain spaces and cannot be a

 Transact-SQL reserved word (such as Select, Alter, or Create).

Microsoft SQL Server Books Online provides an invaluable reference to all the features of

Microsoft SQL Server 2005. You can download a free copy (a set of help fi les) from

 www.microsoft.com/technet/prodtechnol/sql/2005/downloads/books.mspx. In SQL Server
Books Online, you can fi nd a list of all the reserved words in Transact-SQL.

You should give your columns meaningful names and use the same name throughout

for a column that occurs in more than one table. You should avoid using column names

that might also match any name internal to Offi ce Access 2007, Microsoft Visual Basic, or

SQL Server. For example, all objects have a Name property, so it’s a good idea to qualify

a column containing a name. For example, use CustomerName, CompanyName, Vendor-

Name, or something similar. You should also avoid names that are the same as built-in

functions, such as Date, Time, Now, or Space.

You will see that if you type a column name that doesn’t meet the Rules for Identifi ers

criteria, the name appears in delimited brackets ([]). Delimited means that the object Delimited means that the object Delimited
name does not meet the criteria of the Rules for Identifi ers naming convention. Delimited

object names must always be encased in brackets ([]) or double quotes ("), but you can

use double quotes only if the server has been set up to accept double quotes surround-

ing identifi ers (fi eld names). When names are delimited, SQL Server can still recognize

and use them, but it must spend extra processing time converting those delimited names

to limited names that meet the criteria for the Rules for Identifi ers naming convention. limited names that meet the criteria for the Rules for Identifi ers naming convention. limited
Also, whenever you refer to objects with delimited names in forms, queries, or other

procedures, you must continue to enclose them in brackets or double quotes. As you can

see, you will have an easier time building your database, and it will run more effi ciently if

you name all your objects using the Rules for Identifi ers.

INSIDE OUT

C
h

ap
ter 26

1460 Chapter 26  Building Tables in an Access Project

C26623252.indd 1460 2/23/2007 9:52:11 PM

Column Data Types
Before you define all the columns for the Companies table, you need to understand the
data types available in SQL Server. Table 26-1 describes all the data types supported
by the Access project table design facility. For the most part, the listed data types are
similar to the ones supported by an Access desktop database (.accdb). A table stored in
SQL Server provides a much wider selection of data types than does an Access desktop
database (.accdb). This allows you to be more exact in the amount of space that each
column must consume and thus gives you the opportunity to save space and processing
time for your database.

Table 26-1  SQL Server Data Types

Data Type

Length (Bytes)

Description

Equivalent Desktop
Database Data Type

bigint 8 Fixed-point integer1 from
–263 to +263 – 1.

(None)

binary Fixed, up to 8000 Fixed-length binary data. (None)

bit 1 True/false values. SQL
Server can store up to
eight columns of the bit
data type in one byte.

Yes/No

char Fixed length, up
to 8000

Non-Unicode (single-
byte character set) fixed-
length character values.

(None)

datetime 8 Date/time value from
January 1, 1753, to
December 31, 9999,
precise to 0.03 seconds.

Date/Time

decimal 5, 9, 13, or 17,
depending on
precision

An alias for numeric.
Fixed-precision numeric
data from –1038 to +1038.
Precision (the number of
digits) can be up to 38,
and Scale (the number
of digits to the right of
the decimal point) can be
as large as the specified
precision.

Number (Decimal)

1  An Access 2007 project does not support the bigint data type. If you attempt to open a table in a 
project file that has a bigint data type included in the design, Access will not be able to open the 
table in Design view.

  Defining Columns 1461

C
h

ap
te

r
26

C26623252.indd 1461 2/23/2007 9:52:11 PM

Data Type

Length (Bytes)

Description

Equivalent Desktop
Database Data Type

float 8 Floating-precision
numeric data from –1.79
× 10308 to +1.79 × 10308.
Although you can define
any precision from 1 to
53 bits in SQL Server, the
table design facility in a
project automatically sets
precision to 53 (8 bytes)
when you select float.

Number (Double)

image 16 plus length of
the image

OLE Object data. OLE Object

int 4 Fixed-point integer
from –2,147,483,648 to
+2,147,483,647.

Number (Long
Integer)

money 8 Currency data from –263
to +263 –1, with four
decimal places.

Currency

nchar Fixed, up to 8000
(4000 characters)

Unicode (double-byte
character set) fixed-
length character values.

(None)

ntext 16 plus length
of the text
(maximum 1
billion characters)

Varying-length Unicode
character values.

Memo

numeric 9 An alias for decimal.
Fixed-precision numeric
data from –1038 to +1038.
Precision (the number of
digits) can be up to 38,
and Scale (the number
of digits to the right of
the decimal point) can be
as large as the specified
precision.

Number (Decimal)

nvarchar Varying, up
to 8000 (4000
characters)

Varying-length Unicode
character values.

Text

C
h

ap
ter 26

1462 Chapter 26  Building Tables in an Access Project

C26623252.indd 1462 2/23/2007 9:52:12 PM

Data Type

Length (Bytes)

Description

Equivalent Desktop
Database Data Type

real 4 Floating-precision
numeric data from –3.4
× 1038 to +3.4 × 1038.
Although you can define
any precision from 1 to
53 bits in SQL Server, the
table design facility in a
project automatically sets
precision to 24 (4 bytes)
when you select real.

Number (Single)

smalldatetime 4 Date/time value from
January 1, 1900, to June
6, 2079, precise to one
minute.

(None)

smallint 2 Fixed-point integer from
–32,768 to +32,767.

Number, Integer

smallmoney 4 Currency data from
–214,748.3648 to
+214,748.3647, with four
decimal places.

(None)

sql_variant 8016 Data type that can
store values of different
data types, except for
text, ntext, image, and
timestamp types. When
you define a column
using the sql_variant data
type, each row in your
table can have a different
type of data in that
column.

(None)

text 16 plus length
of the text
(maximum 2
billion characters)

Varying-length non-
Unicode character values.

Memo

  Defining Columns 1463

C
h

ap
te

r
26

C26623252.indd 1463 2/23/2007 9:52:12 PM

Data Type

Length (Bytes)

Description

Equivalent Desktop
Database Data Type

timestamp 8 Database-wide unique
number that changes
each time a row is
updated. SQL Server
uses timestamp values
to identify when the
data was last affected
and in what order the
rows were affected. You
can define only one
timestamp column per
table, and you should
not define an index for
a timestamp column
because the values are
always changing.

(None)

tinyint 1 Fixed-point integer from
0 to 255.

Number, Byte

unique-
identifier

16 Globally Unique Identifier
(GUID). Declaring the
uniqueidentifier data
type is useful if the data
in your table needs to be
uniquely identified apart
from all the other data
in all the other tables in
all the other databases
that are networked
with your database. You
can specify only one
column per table as the
uniqueidentifier data
type.

Number, GUID

varbinary Varying, up to
8000

Varying-length binary
data.

(None)

varchar Varying, up to
8000

Varying-length non-
Unicode character values.

Text

xml Varying, up to 2
gigabytes

Stores well-formed and
optionally schema-bound
XML fragments
as a series of UTF-16
encoded bytes.

Memo

C
h

ap
ter 26

1464 Chapter 26  Building Tables in an Access Project

C26623252.indd 1464 2/23/2007 9:52:12 PM

Note
You can also create user-defi ned data types in Microsoft SQL Server 2005. For example,

you might want to defi ne a data type named StateProvince that is always two characters

and must not be null. If you or your administrator has created user-defi ned data types

in your database, Access displays them in the list of available data types in a table’s

Design view.

An sql_variant is a special data type that can store a variety of other data types. To do

this, SQL Server stores an additional piece of information with the column called meta-
data (information that describes other data). Each row in an sql_variant column can store

different data types except for text, ntext, timestamp, image, and sql_variant. Because

sql_variant can hold a variety of data types, it can also behave differently than you might

expect when comparing and converting the values it contains. It will also take SQL Server

longer to work with sql_variant data types because it has to interpret the metadata in

each row to learn what type of data is stored there. If you know that the data in your col-

umn will always be the same type, you should use the specifi c data type declaration for

that column instead of sql_variant.

Completing the Columns in the Companies Table
You now know enough about column data types to fi nish the basic design of the Com-
panies table. Earlier, you entered CompanyID as the fi rst column in the table. Now,
select int as the data type—equivalent to a long integer in a desktop database—for this
column. You can see that Access sets the length property for you. For some of the
remaining columns that are character data types (including char, nchar, ntext, nvar-
char, text, and varchar), you will be able to set the data length you want.

The property in the table’s Design window, Allow Nulls, specifi es whether Null values
can be entered in this column. This is similar to the Required property in Access .accdb
fi les but works in the opposite fashion. By default, Allow Nulls is always selected (true).
If you want to require data in this column, you should click the Allow Nulls property to
remove the check mark. (If you are tabbing from one column to the next, you can also
press the Spacebar to toggle the Allow Nulls property.) Because CompanyID needs to be
a unique identifi er with a value in every row, remove the check mark from Allow Nulls.

The Description property for each column allows you to enter a descriptive phrase.
Access displays this description on the status bar (at the bottom of the Access window)
whenever you select this column in a view query or a function query in Datasheet view

Note
You can also create user-defi ned data types in Microsoft SQL Server 2005. For example,

you might want to defi ne a data type named StateProvince that is always two characters

and must not be null. If you or your administrator has created user-defi ned data types

in your database, Access displays them in the list of available data types in a table’s

Design view.

INSIDE OUT Understanding sql_variant

An sql_variant is a special data type that can store a variety of other data types. To do

this, SQL Server stores an additional piece of information with the column called meta-
data (information that describes other data). Each row in an sql_variant column can store

different data types except for text, ntext, timestamp, image, and sql_variant. Because

sql_variant can hold a variety of data types, it can also behave differently than you might

expect when comparing and converting the values it contains. It will also take SQL Server

longer to work with sql_variant data types because it has to interpret the metadata in

each row to learn what type of data is stored there. If you know that the data in your col-

umn will always be the same type, you should use the specifi c data type declaration for

that column instead of sql_variant.

INSIDE OUT

  Defi ning Columns 1465

C
h

ap
te

r
26

C26623252.indd 1465 2/23/2007 9:52:13 PM

or in a form in Form view or Datasheet view. For this example, enter Unique Company
ID in the Description property for the CompanyID column. You don’t need to worry
about setting any of the custom properties on the Columns or Lookup tab in the lower
part of the window for now.

Tab down to the next line, enter CompanyName for the Column Name property, and
then choose nvarchar as the data type. Enter 50 in the Length property to restrict the
length of data entered to no more than 50 characters. Every row should have a value in
the CompanyName column, so clear Allow Nulls for this column. In Description, enter
Company Name.

Use the information listed in Table 26-2 to complete the design of the table shown in
Figure 26-15.

Table 26-2  Column Definitions for the Companies Table

Column Name Data Type Length Allow Nulls Description

CompanyID int 4 No Unique company ID

CompanyName nvarchar 50 No Company name

Department nvarchar 50 Yes Department

Address nvarchar 255 Yes Address

City nvarchar 50 Yes City

County nvarchar 50 Yes County

StateOrProvince nvarchar 20 Yes State or province

PostalCode nvarchar 20 Yes Postal/ZIP Code

PhoneNumber nvarchar 30 Yes Phone number

FaxNumber nvarchar 30 Yes Fax number

Website ntext 16 Yes Web site address

ReferredBy int 4 Yes Contact who referred
this company

When you are finished entering all the column definitions, click the Save button on the
Quick Access Toolbar to save the table. Access displays the Choose Name dialog box, as
shown in Figure 26-16. Name the table Companies, and click OK.

C
h

ap
ter 26

1466 Chapter 26  Building Tables in an Access Project

C26623252.indd 1466 2/23/2007 9:52:13 PM

Figure 26-15  Your completed column definitions for the Companies table should look like this.

Figure 26-16  Enter a name for the new table in your Access project.

You haven’t defined a primary key for this new Companies table, so Access displays a
warning and asks you whether you want to add a primary key now. You’ll return to this
table later to define the primary key, so click No to finish saving the table, and then
close the table definition window.

Understanding Column Properties
You can further define how your database will store and handle your data by specifying
additional column properties. Table 26-3 displays a complete listing of the properties
you might need when creating columns. Depending on which data type you select, cer-
tain properties become available in the lower half of the table’s Design window to cus-
tomize your column definition. All the properties are displayed, but only some of them
are relevant depending on the data type you choose. (For example, it doesn’t make

  Defining Columns 1467

C
h

ap
te

r
26

C26623252.indd 1467 2/23/2007 9:52:14 PM

much sense to specify the number of decimal places for the text nvarchar data type.)
Unavailable properties appear dimmed.

Table 26-3  SQL Server Table Column Properties

Property Description

Default Value The default value entered in the column if no other value is
entered. You can type a default value directly or select from a
list of global default values. SQL Server enters the Default Value
property for a column when it saves the row, not when you first
begin to enter data in the row. If you want to display a default
value for data entry in a column, create a form, bind it to the
table, and then set the default value of the control in the form.

Precision For decimal and numeric data types, the maximum number of
digits allowed. The default value is 18, and you can specify an
integer value from 1 to 38. For other numeric data types, SQL
Server sets the Precision property depending on the data type.

Scale For decimal and numeric data types, the maximum number
of decimal digits stored. Scale must be less than or equal to
Precision. See also Decimal Places.

Identity For fixed-point data types (integer and decimal), this converts the
column to a system-generated number that functions much like
AutoNumber in Access desktop databases. An identity column
cannot be null and cannot have a default value. In addition, you
can specify the starting value (Seed) and Increment value for
Identity. The default value is No. Set Identity to Yes to create an
identity column or Yes (Not For Replication) to create an identity
column that maintains its value when the data is replicated.

Identity Seed The starting value for an identity column. The default value is 1.

Identity Increment The amount that each value in the Identity property is
incremented for new rows. You can enter an integer from 1 to
2,147,483,647. The default value is 1.

Is RowGuid If the data type of the column is uniqueidentifier, setting this to
Yes tells SQL Server to use it as a globally unique identifier for
replication. The default setting is No.

Formula The formula for a computed column.

Collation The collating (sorting) sequence that SQL Server applies by
default to a text column when its values are returned as rows in
the results of a query. Click the property, and then click the Build
(...) button to open a dialog box to choose from other collation
sequences available on your computer or on the server. The
default is the collation sequence defined for your database.

Format The display format for the column. For details about custom
formats, see “Setting Control Properties” on page 651.

C
h

ap
ter 26

1468 Chapter 26  Building Tables in an Access Project

C26623252.indd 1468 2/23/2007 9:52:14 PM

Property Description

Decimal Places The number of decimal places displayed. (This is not the same
as Scale, which controls the decimal places stored.) The default
value is [Auto], which indicates that the number of decimal places
displayed automatically adjusts depending on the precision of the
number stored in the column. See also Scale.

Input Mask An input mask that controls and formats how data is entered. For
details about input masks, see “Defining Input Masks” on page
170.

Caption You can enter a fully descriptive column name that Access
displays in form labels and in report headings. Because you
should create column names with no embedded spaces, you
can use the Caption property to specify a name that includes
spaces for Access to use in labels and headers associated with this
column in queries, forms, and reports.

Indexed Identifies whether the column is indexed. The default is No. You
can specify Yes (Duplicates OK) to create a nonunique index or
Yes (No Duplicates) to create a unique index. See also “Adding
Indexes” on page 1471.

Hyperlink The text column value can be displayed as a hyperlink. The
default is No.

IME Mode and IME
Sentence Mode

On computers with an Asian-language version of Windows
and an appropriate Input Method Editor (IME) installed, these
properties control the conversion of characters in kanji, hiragana,
katakana, and hangul character sets.

Furigana You can specify an alternate column name for this property, and
SQL Server copies the Furigana (Japanese Text) equivalent of the
typed text into the named column.

Postal Address On a Japanese-language system, this property allows you to
specify a control or a column that displays an address based on
an entered postal code. You can also use this feature to display a
bar code based on an entered address.

The table design facility also lets you define Lookup properties for columns identical
to those available in an Access desktop database. You can define Lookup properties for
the bigint, bit, char, decimal, float, int, nchar, ntext, numeric, nvarchar, real, smallint,
text, tinyint, and varchar data types. You can specify a Display Control for each of the
columns as a text box, list box, or combo box. For the bit data type, you can also spec-
ify a check box as the Display Control. This allows you to display related information
instead of the actual data when you view a table, form, view, or function in Datasheet
view. When you create new forms, the controls on the form bound to columns inherit
the lookup from the table design. The same suggestions we made about lookups in
Chapter 5, “Modifying Your Table Design,” also apply here. For more information, see
“Taking a Look at Lookup Properties” on page 240.

  Defining Columns 1469

C
h

ap
te

r
26

C26623252.indd 1469 2/23/2007 9:52:14 PM

TROUBLESHOOTING
I’m using SQL Server 7.0, so why can’t I see all the column properties or
create lookups?

This book assumes that you are working with SQL Server 2000 or later in these chapters

on Access projects. It is possible to build projects in earlier versions of SQL Server, but

not all the features discussed here are supported, including many column properties and

the ability to specify lookups at the table level.

Defi ning a Primary Key
As you know from the principles of good table design (see Article 1 on the companion
CD), it is important to defi ne a primary key to uniquely identify each row in a table.
Doing so allows you to defi ne relationships with other tables and reduces redundant
data. Also, you cannot update a table that does not have a primary key. Defi ning a pri-
mary key for a table in an Access project is very similar to defi ning a primary key in an
Access desktop database (.accdb).

Remember, you didn’t defi ne a primary key for the Companies table. Open that table
again in Design view. To defi ne a primary key, select the column that you want to make
into a primary key—in this case, the CompanyID column. Then click the Primary Key
button in the Tools group on the Design tab under Table Tools. Access automatically
creates a UNIQUE index on the selected column and creates a primary key named
PK_Companies. Access displays a key symbol to the left of the selected column to
acknowledge your defi nition of the primary key, as shown in Figure 26-17. Be sure to
save your changes. Note that when you need to defi ne multiple columns as the primary
key, you can select a group of columns by holding down Ctrl and clicking each one.

Because an index is created when you defi ne the primary key, you also have the ability
to modify the properties of the primary key as an index. To modify the primary key,
you need to access the Indexes/Keys tab of the table properties either by right- clicking
any column in Design view and clicking Indexes/Keys on the shortcut menu or by
clicking the Indexes button in the Show/Hide group on the Design tab. To learn more
about modifying the index properties of the primary key, see the next section.

TROUBLESHOOTING

C
h

ap
ter 26

1470 Chapter 26  Building Tables in an Access Project

C26623252.indd 1470 2/23/2007 9:52:14 PM

Figure 26-17  Define the CompanyID column as the primary key for the Companies table.

Adding Indexes
Creating indexes in a table allows for faster access to the information in the table when
it is being queried, much the same way that you use the index in this book—you find the
term you want and jump directly to the pages containing that term. You don’t have to
leaf through all the pages to find the information you want to see.

Similar to an Access desktop database, SQL Server implements the primary key by
creating an index on it. As noted earlier, you must define a primary key to be able to
update an SQL Server table from your Access project. You must also define primary
keys for your tables to be able to create relationships between tables.

However, you might often use criteria on other columns in a table to select data using a
query (view, function, or stored procedure), and you can increase the efficiency of these
queries by adding one or more indexes to those columns. Access projects support two
basic types of indexes: clustered and nonclustered. When you define a clustered index on
a table, SQL Server physically sequences the rows in the table based on the values in

  Adding Indexes 1471

C
h

ap
te

r
26

C26623252.indd 1471 2/23/2007 9:52:15 PM

the index. This, in effect, becomes the default ordering for rows that you fetch from the
table. As you can imagine, you can create only one clustered index on a table. If a clus-
tered index doesn’t already exist, SQL Server makes the primary key a clustered index
when you defi ne it. You can defi ne up to 249 nonclustered indexes to help make fetch-
ing your data using criteria faster.

Indexes don’t always speed up the performance of your database. They occupy extra disk

space and can also slow down INSERT, UPDATE, and DELETE actions on the table because

the index has to be updated each time such an action occurs. A good rule of thumb is to

create indexes only on columns in the table that you know you will use often in criteria.

Assume that your users will often query the Companies table using criteria on the City
column. To speed up this search, let’s create an index on the City column. Open the
Companies table in Design view, and then open the Properties window on the Indexes/
Keys tab by right-clicking any column in Design view and clicking Indexes/Keys on the
shortcut menu. This opens the Properties window and selects the Indexes/Keys tab, as
shown in Figure 26-18.

Figure 26-18  You can view the indexes of your SQL Server table on the Indexes/Keys tab of the 
table’s Properties window.

INSIDE OUT Too Many Indexes Is Not a Good Thing

Indexes don’t always speed up the performance of your database. They occupy extra disk

space and can also slow down INSERT, UPDATE, and DELETE actions on the table because

the index has to be updated each time such an action occurs. A good rule of thumb is to

create indexes only on columns in the table that you know you will use often in criteria.

INSIDE OUT

C
h

ap
ter 26

1472 Chapter 26  Building Tables in an Access Project

C26623252.indd 1472 2/23/2007 9:52:16 PM

The Indexes/Keys tab always shows you the first index created on the table—usually the
one associated with the primary key. If there were more than one index on this table,
you could view each of them by selecting them from the Selected Index list. Right now,
the only index on the Companies table is the primary key index. To begin defining a
new index, click the New button. By default, Access starts a new index called IX_Com-
panies on the first column of the table (the CompanyID column in this case).

To create the index on the City column, start by typing a more descriptive name for the
index in the Index Name field. Click the Index Name text box, and change the name to
IX_Companies_City by adding _City to the end of the index name. When you look up
the index in the future, it will be easier to identify its purpose.

Below the Index Name field is a box with two headings labeled Column Name and
Order. Here you specify which columns you want to be a part of the index and the order
in which each column should be sorted. You can include up to 16 columns in an index.
You can specify Ascending or Descending order for each column in the index. If the
index contains multiple columns, each column will be sorted in the order it was added
to the index. Right now, CompanyID is the only member of the index. Click the Com-
panyID name to display a list, and replace CompanyID by selecting City from the list.
Leave the sort order as Ascending. Because the City column is the only member of this
index, you don’t need to specify any other columns under Column Name.

The Index Filegroup is the filegroup in which SQL Server saves the index information.
SQL Server manages indexes using filegroups and, by default, stores them in the PRI-
MARY filegroup. If you need to define a large quantity of indexes in the database, you
or an administrator might decide to create additional filegroups to better organize your
indexes. If additional filegroups are available, you will be able to select them from the
drop-down list. For the ContactTracking database, the PRIMARY filegroup should be
sufficient for storing all your indexes.

If you select the Create UNIQUE check box, each value entered in the index or key
column must be unique. You then have the option to specify whether you are creating
a unique index or a unique constraint. If you select Constraint, SQL Server creates an
index along with a constraint that checks to make sure the value is unique before add-
ing or updating a row in the table. The benefit of the constraint is that you can supply
validation text that is more descriptive than the generic message SQL Server generates
for the unique index. However, creating a unique index offers some extra features not
available when creating a unique constraint. For example, because a unique index is
a physical index, SQL Server sorts the key values in the order specified with the col-
umn name, which might enhance the performance of some queries. A unique index
also allows you to select the Ignore Duplicate Key check box. If you select the Ignore
Duplicate Key check box, then during a transaction to update or add rows, SQL Server
discards any rows that would create duplicates. Because it is possible for the City col-
umn to contain duplicate values, you do not want to create a unique index on the City
column. For this index, do not select the Create UNIQUE check box.

  Adding Indexes 1473

C
h

ap
te

r
26

C26623252.indd 1473 2/23/2007 9:52:16 PM

CAUTION!
When you select the Ignore Duplicate Key check box for a unique index, an Update

operation that would create a duplicate value will instead delete the row to be updated.

This happens because an Update operation is actually a Delete of the affected rows fol-

lowed by an Insert of the changed rows. The Delete will succeed, but the Insert will be

discarded because it is a duplicate.

The Fill Factor and Pad Index options allow you to specify additional information to
fi ne-tune the index performance in the database. The Fill Factor percentage indicates
what percent of each index page the database should leave empty when building and
updating the index. If space is left on each index page, then it is possible for SQL Server
to add new entries to the middle of the index when data is inserted without having to
build new pages for the index. Specifying a fi ll factor greater than the default 0% (no
room left on each page) is useful only for tables with large indexes that are updated
often. If you specify a fi ll factor greater than 0%, then you also have the option to select
the Pad Index check box. Pad Index uses the Fill Factor percent to pad the interior
of each index node—each node (group of index pages with similar key values) in the
index will have additional space to grow. Like Fill Factor, Pad Index is useful only for
tables with large indexes that are updated often. The index on the City column does not
need to take advantage of the Fill Factor or Pad Index option, so leave Fill Factor at the
default of 0%.

Selecting the Create As CLUSTERED check box creates the index as a clustered index.
Remember, you can create only one index per table as a clustered index because a clus-
tered index dictates the physical order of the rows in the table. The primary key (Com-
panyID) is already defi ned as clustered, so do not select the Create As CLUSTERED
 check box.

The next option is Do Not Automatically Recompute Statistics. To enhance perfor-
mance, SQL Server creates and maintains statistics on the distribution of data values in
your tables. If you select this option and the server already has computed statistics for
this index on the table, SQL Server reuses the existing statistics instead of re-creating
them. Using this option might speed the creation of an index on a very large table, but
the statistics might not be as accurate because of the changes in the index. As a result,
the index might not be as effi cient as it could be. Because this is the fi rst time you have
created an index on the City column, no existing statistics are available to be recom-
puted. Selecting this check box won’t do anything, so leave it blank.

If you create a unique constraint, it is important to enter a descriptive message in the
Validation Text box. If the validation of the unique constraint fails, then SQL Server dis-
plays the message in the Validation Text box instead of the cryptic message it displays
by default. Be sure to state the names of the columns in the index. For example, instead

CAUTION!

C
h

ap
ter 26

1474 Chapter 26  Building Tables in an Access Project

C26623252.indd 1474 2/23/2007 9:52:16 PM

of entering a message such as Duplicate value in Companies table, be more specific by
entering A duplicate value for City was entered in the Companies table. This lets users
know how to correct the data input. The City index is not a unique constraint, so you
do not need to enter any validation text.

When you have completed the index on the City column, the information on the
Indexes/Keys tab should look like Figure 26-19. You can close the Properties window
or click New to add more indexes. If you create an index by mistake, select it from the
Selected Index list, and click the Delete button to remove it. Be sure to save the table so
that the index will be created on the table.

Figure 26-19  The completed IX_Companies_City index should look like this.

Creating Additional Tables in Contact Tracking
So far, we’ve discussed how to build the Companies table in an Access project. Before
you can define constraints and relationships, you’ll need to build several more tables.
Let’s start by building the Contacts table and the CompanyContacts table. Table 26-4
shows you the columns you need for the Contacts table.

  Creating Additional Tables in Contact Tracking 1475

C
h

ap
te

r
26

C26623252.indd 1475 2/23/2007 9:52:16 PM

Table 26-4  Column Definitions for the Contacts Table

Column Name Data Type Length Allow Nulls Description

ContactID int 4 No Unique contact ID

LastName nvarchar 50 No Last name

FirstName nvarchar 50 Yes First name

MiddleInit nvarchar 1 Yes Middle initial

Title nvarchar 10 Yes Person title

Suffix nvarchar 10 Yes Person suffix (Jr., Sr., II,
and so on)

ContactType nvarchar 50 Yes Description of the
contact type

BirthDate datetime 8 Yes Birth date

DefaultAddress smallint 2 Yes Specify Work or
Home as the default
address

WorkAddress nvarchar 255 Yes Address

WorkCity nvarchar 50 Yes City

WorkStateOrProvince nvarchar 20 Yes State or province

WorkPostalCode nvarchar 20 Yes Postal/ZIP code

WorkCountry nvarchar 50 Yes Country

WorkPhone nvarchar 30 Yes Work phone

WorkExtension nvarchar 20 Yes Phone extension

WorkFaxNumber nvarchar 30 Yes Fax number

HomeAddress nvarchar 255 Yes Address

HomeCity nvarchar 50 Yes City

HomeStateOrProvince nvarchar 20 Yes State or province

HomePostalCode nvarchar 20 Yes Postal/ZIP code

HomeCountry nvarchar 50 Yes Country

HomePhone nvarchar 30 Yes Home phone

MobilePhone nvarchar 30 Yes Mobile phone

EmailName ntext 16 Yes E-mail name

Website ntext 16 Yes Web site address

Photo image 16 Yes Photo of contact

SpouseName nvarchar 75 Yes Spouse name

SpouseBirthDate datetime 8 Yes Spouse birth date

Notes ntext 16 Yes Notes

C
h

ap
ter 26

1476 Chapter 26  Building Tables in an Access Project

C26623252.indd 1476 2/23/2007 9:52:16 PM

Column Name Data Type Length Allow Nulls Description

CommissionPercent float 8 Yes Commission when
referencing a sale

Inactive bit 1 No Contact is inactive

Define ContactID as your primary key for this table by clicking the ContactID column
name and then clicking the Primary Key button in the Tools group on the Design tab to
define the key. Save the table, and name it Contacts.

Next you need to build the linking table that will act as the “glue” between the Compa-
nies table and the Contacts table—CompanyContacts. Table 26-5 shows the columns
you need to define to create the CompanyContacts table.

Table 26-5  Column Definitions for the CompanyContacts Table

Column Name Data Type Length Allow Nulls Description

CompanyID int 4 No Company/organization

ContactID int 4 No Person within company

Position nvarchar 50 Yes Person’s position
within the company

DefaultForContact bit 1 No Is this the default
company for this
contact?

DefaultForCompany bit 1 No Is this the default
contact for this
company?

Define the combination of CompanyID and ContactID as the primary key for this table
by clicking the selection button next to CompanyID and then holding down the Ctrl
key and clicking the button next to ContactID. Click the Primary Key button in the
Tools group on the Design tab to define the key, and save the table as CompanyCon-
tacts. Now that you have three different tables created in the project, you’ll learn how to
define some constraints that will control how users can enter data in them.

Defining Check Constraints
Constraints are a way of limiting the values that can be entered in a column or group of
columns. Constraints are handy because you can use them to enforce data consistency
from your users and ensure the relational integrity of your database. You might already
be familiar with some of these constraints. Access projects use a group of constraints
to create elements in the table design interface that are familiar to Access desktop data-
base (.accdb) users. These elements include the ability to specify a default value in a col-
umn, declare primary and foreign keys, and create a table index as a unique index.

Access projects also include the ability to create additional custom constraints called
check constraints for the columns you create in your tables. Check constraints are similar

  Defining Check Constraints 1477

C
h

ap
te

r
26

C26623252.indd 1477 2/23/2007 9:52:17 PM

to Access desktop database table and field validation rules. You can define constraints
to ask the database to check the values of a column (or a group of columns) before the
database saves a row to make sure they meet the criteria you specified. Check con-
straints differ from validation rules because they are applied to the whole row when
the row is added or updated. If you enter a value that fails a check constraint criterion,
you won’t see the validation message until you try to save the row. SQL Server evaluates
check constraints in the order that you create them on the table. Let’s take a look at how
to create a check constraint.

Open the Contacts table in Design view, right-click any column to display the shortcut
menu, and then click Constraints. This opens the Properties window with the Check
Constraints tab selected. Because you haven’t created any check constraints yet, the
options in the window will be unavailable and empty. To begin creating a new check
constraint, click the New button. This starts a definition for a new check constraint, as
shown in Figure 26-20.

Figure 26-20  On the Check Constraints tab in the Properties window, click New to create a new 
check constraint on the Contacts table.

The Constraint Name is the name of the current constraint. By default, Access has
created a constraint named CK_Contacts. This isn’t a very descriptive name for the
constraint. Unfortunately, you cannot rename the constraint until you enter a valid
expression in the Constraint Expression box, so start by typing a valid expression.

A constraint expression can be any valid SQL expression that evaluates to true or
false. One of the rules you need to enforce for the Contacts table is that no contact

C
h

ap
ter 26

1478 Chapter 26  Building Tables in an Access Project

C26623252.indd 1478 2/23/2007 9:52:17 PM

can have a commission percent greater than 90 percent. To defi ne this rule, you must
enter an expression in the Constraint Expression box that evaluates to false if anyone
enters a commission percent greater than 90 percent for a contact. To create the com-
mission percent expression, type the following in the Constraint Expression box:
CommissionPercent <= 0.9.

When you attempt to save a value in CommissionPercent and this expression evaluates
to false (you entered a commission percent greater than 90 percent), Access displays
the validation message, and the row will not be saved. You can use many other types
of expressions to validate the data that is being added or updated. For now, let’s fi nish
 creating the commission percent check constraint and make sure it works.

Now that you have a valid expression in the Constraint Expression box, you can change
the name of the check constraint to something more meaningful. Click the Constraint
Name box, and enter CK_Contacts_CommissionPercent as the constraint name. This is
a useful name because when you look at objects in the database, CK tells you that this
object is a check constraint, Contacts tells you that it is applied to the Contacts table,
and CommissionPercent tells you which column is being validated.

Note
You might notice that if you try to move the focus out of the Constraint Expression box

while it contains a partially complete or incorrect expression, Access immediately gen-

erates an error stating that the expression could not be validated. You can click Yes to

keep working on the expression, or you can click No to move the focus away from the

Constraint Expression box. If the Constraint Expression box is blank, Access offers you

the option to delete the constraint. In this case, click No to continue working on the con-

straint. Be careful: Access cannot save the constraint unless the expression is valid.

Because all check constraints are evaluated only when the entire row is updated or
inserted, it is important to make sure that the validation text is descriptive enough to
tell the user where the problem is so that it can be fi xed. In the Validation Text box,
type You cannot specify a commission greater than 90%. This will alert the user that
the commission percent value is too great if the validation of the constraint fails.

If you want to make sure that all existing contacts meet the commission percent con-
straint, leave the Check Existing Data On Creation check box selected. When you select
this check box, SQL Server will not save the constraint if any existing rows fail to meet
the constraint expression. The Enforce Constraint For Replication check box allows
you to apply the constraint to any copies of the database that you distribute using
replication. This option is useful if you ever plan to replicate your database. For now,
you can clear this check box. In order for SQL Server to apply the constraint whenever
users insert or update data, you must leave the Enforce Constraint For INSERTs And
UPDATEs check box selected. When you are done creating the commission percent
check constraint, it should look like Figure 26-21. If you need to add check constraints,

Note
You might notice that if you try to move the focus out of the Constraint Expression box

while it contains a partially complete or incorrect expression, Access immediately gen-

erates an error stating that the expression could not be validated. You can click Yes to

keep working on the expression, or you can click No to move the focus away from the

Constraint Expression box. If the Constraint Expression box is blank, Access offers you

the option to delete the constraint. In this case, click No to continue working on the con-

straint. Be careful: Access cannot save the constraint unless the expression is valid.

  Defi ning Check Constraints 1479

C
h

ap
te

r
26

C26623252.indd 1479 2/23/2007 9:52:17 PM

click the New button. You can also delete a check constraint by choosing it from the
Selected Constraint list and then clicking the Delete button.

Figure 26-21  Your completed commission percent check constraint on the Contacts table should 
look like this.

When you are finished creating check constraints, close the Properties window, and
save the table. When you save the table, the check constraints are saved as well. Now
open the table in Datasheet view, and see whether the check constraint is working cor-
rectly. Enter 1 in the ContactID field, enter your last name in the LastName column,
tab to the CommissionPercent column, and then try entering a commission percent of
100%. Press the Down Arrow key to move to a different record, and you should see the
error message in Figure 26-22.

Figure 26-22  SQL Server displays your custom message when validation fails on the check con-
straint for commission percent.

C
h

ap
ter 26

1480 Chapter 26  Building Tables in an Access Project

C26623252.indd 1480 2/23/2007 9:52:18 PM

Note
In the initial release of Access 2007, Access fails to display the defi ned validation text

when validation fails on a check constraint. Instead, Access displays the SQL Server error

number and cryptic message. Microsoft is aware of this and is investigating the issue.

Creating Additional Constraint Expressions
Now that you know how to create a check constraint, let’s take a look at some other
types of expressions that you can use to validate your data:

● The IN keyword allows you to specify a list of values that the data must match.
For example, if you want to make sure the suffi x values in the Contacts table are
limited to Jr., Sr., PhD., or II, use an expression like this:

[Suffix] IN ('Jr.', 'Sr.', 'PhD.', or 'II')

● You can use the LIKE keyword to specify the formatting of data. If you want to
make sure the WorkPostalCode column in Contacts is fi ve numeric digits, use an
expression like this:

[WorkPostalCode] LIKE '[0–9][0–9][0–9][0–9][0–9]'

● You can also check multiple columns in one constraint by using expressions
joined with the AND and OR operators. All constraint expressions must evaluate
to true or the database won’t save the row. If you want the constraint to pass when
the constraint expression evaluates to false, prefi x the expression with the NOT
operator. For example, in the Contacts table, if you want to make sure that Work-
StateOrProvince information is always supplied whenever WorkCity is supplied,
use an expression like this:

(NOT ([WorkStateOrProvince] Is Null)) OR ([WorkCity] Is Null)

When the user supplies a city (Springfi eld) but not a state or province (IL or MA), both
NOT ([WorkStateOrProvince] Is Null) and ([WorkCity] Is Null) will be false, and the
constraint will fail. Note that this constraint allows the user to enter only the state or
province without a city, but this does not allow the user to enter a city without also
specifying a state or province.

Although you can join multiple constraint expressions together with AND and OR opera-

tors, it is generally a good idea to keep the expressions separate unless one column value

relies on another column value for validation. Use parentheses around multiple com-

parison expressions and Boolean operators to ensure that your expression evaluates as

you expect.

Note
In the initial release of Access 2007, Access fails to display the defi ned validation text

when validation fails on a check constraint. Instead, Access displays the SQL Server error

number and cryptic message. Microsoft is aware of this and is investigating the issue.

INSIDE OUT Enter Multiple Constraints Carefully

Although you can join multiple constraint expressions together with AND and OR opera-

tors, it is generally a good idea to keep the expressions separate unless one column value

relies on another column value for validation. Use parentheses around multiple com-

parison expressions and Boolean operators to ensure that your expression evaluates as

you expect.

INSIDE OUT

  Defi ning Check Constraints 1481

C
h

ap
te

r
26

C26623252.indd 1481 2/23/2007 9:52:19 PM

Another good use of check constraints is to purposefully take advantage of the ability
to provide validation text. The current design of the Companies table requires the input
of a company name in every row by setting the Allow Nulls property for CompanyName
to False (no check mark). When you enter a row without a company name, you get a
message from SQL Server similar to the one shown in Figure 26-23.

Figure 26-23  SQL Server returns this message when validation for the Allow Nulls property fails.

Instead of using the Allow Nulls property to require data entry, you could create a
check constraint that uses an expression like this:

Not [CompanyName] Is Null

Then you can include the validation text: You must supply a Company / Organization
name. Now your users see a much easier to understand message when they forget to
enter a company name, and you will still be requiring an entry in the CompanyName
column for every row added.

Note
If you decide to use a check constraint to require data entry in certain columns, be sure

to set the Allow Nulls property for those columns. SQL Server always checks the Allow

Nulls setting fi rst. If that fails, SQL Server never checks any constraints. So, if a user

attempts to save a row that incorrectly contains a Null, the user sees the cryptic SQL

Server message instead of the one you specifi ed. However, you cannot use this technique

for a primary key column because SQL Server requires that no columns in a primary key

contain a Null value (the Allow Nulls property must always be cleared).

Defi ning Relationships
Now that you have learned how to build tables in an Access project, you can start defi n-
ing relationships between them. As explained in Chapter 4, defi ning relationships
is valuable because it enforces referential integrity between the tables. It also makes
building queries and forms on those tables easier. The same is true in an Access project
linked to SQL Server.

Defi ning Relationships in Table Design View
After you’ve built the tables, you’re ready to start defi ning relationships. In an Access
project, you can defi ne a relationship in Design view. All you need are two tables—one

Note
If you decide to use a check constraint to require data entry in certain columns, be sure

to set the Allow Nulls property for those columns. SQL Server always checks the Allow

Nulls setting fi rst. If that fails, SQL Server never checks any constraints. So, if a user

attempts to save a row that incorrectly contains a Null, the user sees the cryptic SQL

Server message instead of the one you specifi ed. However, you cannot use this technique

for a primary key column because SQL Server requires that no columns in a primary key

contain a Null value (the Allow Nulls property must always be cleared).

C
h

ap
ter 26

1482 Chapter 26  Building Tables in an Access Project

C26623252.indd 1482 2/23/2007 9:52:20 PM

that has a primary key and another that contains a related foreign key. Open the Com-
panyContacts table in Design view, right-click any column, and click Relationships.
This opens the Properties window with the Relationships tab selected. Because you
haven’t created any relationships yet, options in the window will be unavailable and
empty. To create a new relationship, click the New button, and a new relationship
appears, as shown in Figure 26-24.

Figure 26-24  Use the Relationships tab in the Properties window to create a new relationship in the 
CompanyContacts table.

Relationship Name displays the name of the relationship that you are currently editing.
By default, Access has named the new relationship FK_CompanyContacts_Companies.
Fortunately, this is a good name for the relationship you are about to create. FK identi-
fies this as a foreign key constraint (or relationship). The two table names identify the
members of the relationship. The infinity symbol preceding the name in the Selected
Relationship box indicates that you are editing or creating this relationship from the
table on the many side of the relationship. If you had opened the Companies table
before beginning to define this relationship, the relationship design window would
show you a primary key symbol instead. Because you are actually defining a constraint
on the table on the many side of the relationship, that table name appears first in
the name.

Underneath Relationship Name are two lists that allow you to specify which tables are
members of the relationship. By default, Access will specify the current table as the
foreign key table and the first table listed alphabetically in the table list as the primary
key table. Because you have created only three tables so far, the Companies table will be

  Defining Relationships 1483

C
h

ap
te

r
26

C26623252.indd 1483 2/23/2007 9:52:20 PM

listed as the primary key table. These are the two tables you want to use in the relation-
ship, so you don’t have to change the selected tables. If you have already created some
other tables in your project, then the Companies table might not be listed as the pri-
mary key table. If it isn’t, simply select it from the list.

Below the table listings are two lists that you can use to specify which columns will be
members of this relationship. You want to create a one-to-many relationship between
Companies and CompanyContacts. The column that they share in the relationship is
the CompanyID column. To create the relationship, select CompanyID from the first list
under both Primary Key Table and Foreign Key Table.

After you have selected the columns you want for this relationship, you need to specify
a few more options before you save the table and this new relationship. When you select
the Check Existing Data On Creation check box, SQL Server will examine the data in
the existing tables and make sure that none of it violates the constraints of the relation-
ship. If SQL Server finds any problems, it displays an error when you try to save the
table, and the save operation will fail. Selecting this check box is a good idea for any
relationship you create, because it ensures that no integrity problems exist with the cur-
rent data in the tables. If you already have any data in your tables, make sure you select
the Check Existing Data On Creation check box.

Selecting the Enforce Relationship For Replication check box makes sure that the for-
eign key constraint (the relationship) is copied to any replicated databases. For now,
you can clear the Enforce Relationship For Replication check box.

The next option, Enforce Relationship For INSERTs And UPDATEs, allows you to
enforce referential integrity for this relationship, ensuring that any added or updated
data does not violate the constraint of the relationship. If you select the Enforce Rela-
tionship For INSERTs And UPDATEs check box, you also have the option of selecting
the Cascade Update Related Fields and/or Cascade Delete Related Records check boxes.
These two options allow you to control what happens to data in related rows when
data in the table containing the primary key changes. If you select the Cascade Update
Related Fields check box, whenever you update data in the primary key columns, SQL
Server also updates any related data in the foreign key column of the related table. If
you select the Cascade Delete Related Records check box, whenever you delete a row
in the table containing the primary key, SQL Server deletes all related rows in the table
containing the foreign key. You should carefully consider selecting Cascade Delete
Related Records because selecting this check box will always delete foreign rows when
you delete any rows in your primary key table. For this relationship, make sure that you
leave the Enforce Relationship For INSERTs And UPDATEs check box selected. Also,
select the Cascade Update Related Fields check box so that SQL Server will propagate
any changes you make to the primary key to the related tables. Leave the check box for
Cascade Delete Related Records cleared.

When you are finished creating the relationship between the Company table and the
Company Contacts table, your Properties window should look like the one shown in
Figure 26-25. If you need to add relationships, click the New button. You can also delete
a relationship by choosing it from the Selected Relationship list and then clicking the
Delete button. Be sure to save your table to save the changes you made to relationships.

C
h

ap
ter 26

1484 Chapter 26  Building Tables in an Access Project

C26623252.indd 1484 2/23/2007 9:52:20 PM

Figure 26-25  You’ve now completed defining a relationship between the Companies table and the 
CompanyContacts table.

Defining Relationships Using Database Diagrams
Database diagrams are similar to the Relationships window in an Access desktop
database (.accdb), but diagrams are more versatile. You can create multiple database
diagrams to organize your table relationships into different visual groups. You can also
edit any portion of your table(s) directly from the Diagram window.

To demonstrate how database diagrams work, let’s create a new one and use it to define
the relationship between the CompanyContacts table and the Contacts table. To create
a new database diagram, on the Create tab, in the Other group, click the arrow on the
New Object button, and then click Diagram. Access opens a blank Diagram window
and displays the Add Table dialog box, as shown in Figure 26-26.

To add a table to the Diagram window, select it from the list, and then click Add (or
double-click the table name). Add Companies, CompanyContacts, and Contacts to the
Diagram window. When you are finished, click the Close button.

  Defining Relationships 1485

C
h

ap
te

r
26

C26623252.indd 1485 2/23/2007 9:52:20 PM

Figure 26-26  You first need to add tables to the Diagram window to begin designing relationships.

Because you have already defined the relationship between the Companies table and
the CompanyContacts table, you’ll see the relationship represented in the Diagram
window as a line drawn from one table to the other, as shown in Figure 26-27. Note that
you might need to click the header of each table and drag it within the Diagram win-
dow to position the tables as shown. The key represents the one side (or primary key
side), and the infinity symbol represents the many side (or foreign key side). A one-to-
one relationship would be represented with keys on each end of the line.

Figure 26-27  The Diagram window shows your three tables and any existing relationship lines.

You can right-click any of the tables shown in the Diagram window to see a list of
options that you can use to control how the table is displayed or to edit its properties.

C
h

ap
ter 26

1486 Chapter 26  Building Tables in an Access Project

C26623252.indd 1486 2/23/2007 9:52:20 PM

For example, you can select Column Properties, Column Names (the default), Keys
(show only the columns that are keys), Name Only (just the table names), or Custom
View. You should already be familiar with what many of these options do because they
have the same functionality as the options you saw in a table’s Design view. If you want
to add any more tables, right-click the diagram, and click Add Table. You can remove
tables from the diagram by right-clicking the table header and selecting Hide Table.
(Hiding the table does not delete it.)

If you open a table’s properties (by clicking Properties on the shortcut menu or by
double-clicking any of the table headers), you will notice the addition of the Tables,
Columns, and Lookup tabs. You can select the table you want to edit on the Tables tab
and set certain table properties. After you select a table, you can choose a column to
edit on the Columns tab. The options you see on the Lookup tab are the same as on the
Lookup tab you see in the bottom half of a table’s Design view. By using these tabs and
manipulating how much of the table is displayed in the diagram, you can easily design
or redesign any part of your tables directly from the Diagram window.

Now let’s define the relationship between CompanyContacts and Contacts. In the Dia-
gram window, you can do this simply by dragging the primary key from one table and
dropping it onto another. To do this, click the selector for the ContactID column name
in Contacts, and drag and drop the column onto the CompanyContacts table. When
you release the mouse button, Access displays the dialog box shown in Figure 26-28 so
that you can define the relationship.

Figure 26-28  You can use the Create Relationship dialog box to define a relationship from the Dia-
gram window.

This dialog box is very similar to what you see on the Relationships tab of a table’s
properties. Relationship Name displays the default name for this relationship. If you
want, you can type a different name. If the keys in each table share the same name,
Access automatically picks them out for you. Otherwise, you can choose the primary

  Defining Relationships 1487

C
h

ap
te

r
26

C26623252.indd 1487 2/23/2007 9:52:21 PM

and foreign keys from the lists under each table name. You can also specify the relation-
ship criteria, as described earlier. For this relationship, make sure that the ContactID
column is the only column specified for both tables. Leave the Check Existing Data On
Creation and Enforce Relationship For INSERTs And UPDATEs check boxes selected.
Also select the Cascade Update Related Fields check box. Make sure all other check
boxes are cleared. When you are done, click the OK button to create the relationship.
The Diagram window will now show the relationship between the CompanyContacts
table and the Contacts table, as shown in Figure 26-29. Note that the asterisk on
 Contacts and CompanyContacts indicates that an update is pending for both tables.

Figure 26-29  The Diagram window now displays the two relationships you created.

You have now created two relationships that represent the many-to-many relationship
between the Companies table and the Contacts table. The relationships you create in a
Diagram window won’t be saved until you save the diagram. When you close the Dia-
gram window or click the Save button on the Quick Access Toolbar, Access prompts
you to provide a name for the diagram. (If you close the Diagram window without first
saving your changes, Access asks you whether you want to save the diagram.) Go ahead
and name this diagram dgmContactTracking. Access also prompts you to save the
pending changes to the two tables. Click Yes to save the new relationship.

Setting Table Design Options
Now that you understand the basic mechanics of defining tables and relationships in
your Access project, let’s take a look at several options that allow you to customize how
you design your tables. To view the database options, click the Microsoft Office Button,
and then click Access Options.

C
h

ap
ter 26

1488 Chapter 26  Building Tables in an Access Project

C26623252.indd 1488 2/23/2007 9:52:21 PM

You can find the first options that affect table design under the General heading in the
Advanced category, as shown in Figure 26-30. As we mentioned in Chapter 4, we highly
recommend that you select the All Databases check box under Use Four-Digit Year For-
matting. When you select this check box, Access displays all year values in date/time
formats with four digits instead of two. This is important because when you see a value
in two-digit date format, such as 15 MAR 12, you won’t be able to easily tell whether
this is March 15, 1912, or March 15, 2012. Although you can affect the display of some
formats in your Regional And Language Options in Windows Control Panel, you won’t
affect them all unless you set four-digit formatting in Access.

Figure 26-30  You can change settings that affect table design in the General section of the 
Advanced category in the Access Options dialog box.

Under Use Four-Digit Year Formatting, you have two options. If you select the This
Database check box, the setting creates a property in the database you currently have
open and affects only that database. If you select the All Databases check box, the set-
ting creates an entry in your Windows registry that affects all databases that you open
on your computer. We recommend that you select the All Databases check box.

The next category that contains useful settings that affect table design is the Object
Designers category. Select that category to see the settings shown in Figure 26-31.

  Setting Table Design Options 1489

C
h

ap
te

r
26

C26623252.indd 1489 2/23/2007 9:52:21 PM

Figure 26-31  You can also change settings that affect table design in the Object Designers cat-
egory in the Access Options dialog box.

Under the Table Design heading of this category, you can set the default field sizes for
text fields. When you choose a data type that supports text (char, nchar, varchar, nvar-
char), Access automatically fills in the length you choose. For Default Field Type, you
can choose the field type that Access selects when you type a new column name in a
table’s Design view and then tab to the Data Type column.

Now that you’ve started to get comfortable with creating an Access project and tables,
you can read the next chapter to learn how to create the different types of queries (func-
tions, stored procedures, and views) supported by Access projects.

C
h

ap
ter 26

1490 Chapter 26  Building Tables in an Access Project

C26623252.indd 1490 2/23/2007 9:52:21 PM

