
PART 8

Articles

ARTICLE 1

Designing Your Database Application A3

ARTICLE 2

Understanding SQL . A33

ARTICLE 3

Exporting Data. A79

ARTICLE 4

Visual Basic Function Reference A85

ARTICLE 5

Color Names and Codes A93

ARTICLE 6

Macro Actions . A101

 A1

ZR1623252.indd 1 2/21/2007 1:08:26 AM

ZR1623252.indd 2 2/21/2007 1:08:28 AM

ARTICLE 1

Designing Your Database Application

You don’t have to go deeply into application and database design theory to build
a solid foundation for your database project. You’ll read about the fundamentals

of application design in the next section of this article, and then you’ll apply those
fundamentals in the succeeding sections, “An Application Design Strategy” and “Data
 Analysis.” The “Database Design Concepts” section teaches you a basic method for
designing the tables you’ll need for your application and for defi ning relationships
between those tables.

Application Design Fundamentals
Methodologies for good computer application design were fi rst devised in the 1960s
by recognized industry consultants such as James Martin, Edward Yourdon, and Larry
Constantine. At the dawn of modern computing, building an application or fi xing a bro-
ken one was so expensive that the experts often advised spending 60 percent or more
of the total project time getting the design right before writing a single line of code.

Today’s application development technologies make building an application much
cheaper and quicker. In fact, the pace of computing is several orders of magnitude faster
than it was just a decade ago. An experienced user can sit down with Microsoft Offi ce
Access 2007 on a computer and build in an afternoon what took months to create on an
early mainframe system (if it was even possible).

Today’s technologies also give you the power to build very complex applications. But
even with powerful tools, creating a database application (particularly a moderately
complex one) without fi rst spending some time determining what the application
should do and how it should operate invites a lot of expensive time reworking the appli-
cation. Even though it’s easier than ever to go back and fi x mistakes or to redesign “on
the fl y,” if your application design is not well thought out it will be expensive and time-
consuming later to track down any problems or to add new functionality.

Application Design Fundamentals . . . . . . . . . . . . . . . . . . A3

An Application Design Strategy . A7

Data Analysis . A13

Database Design Concepts. A16

When to Break the Rules . A28

 A3

ZR1623252.indd 3 2/21/2007 1:08:29 AM

The following is a brief overview of the typical steps involved in building a database
application.

Step 1: Identifying Tasks
Before you start building an application, you should have some idea of what you want
it to do. It is well worth your time to make a comprehensive list of all the major tasks
you want to accomplish with the application—including those that you might not need
right away but might want to implement in the future. By major tasks, we mean applica-
tion functions that will ultimately be represented in a form or a report in your Access
database. For example, “Enter customer orders” is a major task that you would accom-
plish by using a form created for that purpose, while “Calculate extended price” is most
likely a subtask of “Enter customer orders” that you would accomplish by using the
same form.

Step 2: Charting Task Flow
To be sure your application operates smoothly and logically, you should group the
major tasks by topic and then order those tasks within groups on the basis of the
sequence in which the tasks must be performed. For example, you should separate
employee-related tasks and sales-related tasks into two topic groups. Within sales, an
order must be entered into the system before you can print the order or examine com-
mission totals.

You might discover that some tasks are related to more than one group or that com-
pleting a task in one group is a prerequisite to performing a task in another group.
Grouping and charting the fl ow of tasks helps you discover a natural fl ow that you can
ultimately refl ect in the way you link the forms and reports in your fi nished application.
Later in this article, you’ll see how we laid out the tasks performed in one of the sample
applications included with this book.

When you’re designing an application for someone else, these fi rst two steps are

absolutely the most important. Learning the work process of the business is critical

to building an application that works correctly for the user. These fi rst two steps help

you understand how the business is run. Remember, your application is trying to make

life easier for the users by automating some critical process that they’re doing some

other way.

If you do a lot of work for small businesses or small departments within larger businesses,

walking the user through this process often helps them understand their own business,

and often leads to new effi ciencies even before you start to write a line of code!

INSIDE OUT Understanding the Work Process

When you’re designing an application for someone else, these fi rst two steps are

absolutely the most important. Learning the work process of the business is critical

to building an application that works correctly for the user. These fi rst two steps help

you understand how the business is run. Remember, your application is trying to make

life easier for the users by automating some critical process that they’re doing some

other way.

If you do a lot of work for small businesses or small departments within larger businesses,

walking the user through this process often helps them understand their own business,

and often leads to new effi ciencies even before you start to write a line of code!

INSIDE OUT

A
rticle 1

A4 Article 1  Designing Your Database Application

ZR1623252.indd 4 2/21/2007 1:08:30 AM

Step 3: Identifying Data Elements
After you develop your task list, perhaps the most important design step is to list the
bits of data—the data elements—required by each task and the changes that will be
made to that data. A given task will require some input data (for example, a price to cal-
culate an extended amount owed on an order); the task might also update the data. The
task might delete some data elements (remove invoices paid, for example) or add new
ones (insert new order details). Or the task might calculate some data and display it,
but not save the data anywhere in the database.

Step 4: Organizing the Data
After you determine all the data elements you need for your application, you must
organize the data elements by subject and then map the subjects into tables in your
database. A subject is a person, place, thing, or action that you need to track in your
application. Each subject normally requires several data elements—individual fi elds
such as name or address—to fully defi ne the subject. With a relational database system
such as Access, you use a process called normalization to help you design the most effi -
cient and most fl exible way to store the data.

See “Database Design Concepts” on page A16 for a simple method of creating a normalized
design.

Step 5: Designing a Prototype and a User Interface
After you build the table structures needed to support your application, you can easily
mock up the application fl ow in forms and tie the forms together using simple macros
or Microsoft Visual Basic event procedures. You can build the actual forms and reports
for your application “on screen,” switching to Form view, Layout view, or Print Pre-
view periodically to check your progress. If you’re building the application to be used
by someone else, you can easily demonstrate and get approval for the “look and feel”
of your application before you spend time writing the complex code that’s needed to
actually accomplish the tasks. (Parts 3 and 7 of this book show you how to design and
construct forms and reports for desktop applications and client/server (project) applica-
tions, respectively; Part 4 shows you how to use Visual Basic to link forms and reports
to build an application.)

Step 6: Constructing the Application
For very simple applications, you might fi nd that the prototype is the application. Most
applications, however, will require that you write code to fully automate all the tasks
you identifi ed in your design. You’ll probably also need to create certain navigation
forms that facilitate moving from one task to another. For example, you might need to
construct forms that provide the road map to your application. You might also need to
build forms to gather user input to allow users to easily fi lter the data they want to use
in a particular task. You might also want to build custom Ribbons for most, if not all, of
the forms in the application.

See “Database Design Concepts” on page
design.

  Application Design Fundamentals A5

A
rt

ic
le

 1

ZR1623252.indd 5 2/21/2007 1:08:30 AM

Step 7: Testing, Reviewing, and Refi ning
As you complete various components of your application, you should test each option
that you provide. When you automate your application using Visual Basic, you’ll have
many debugging tools at your disposal to verify correct application execution and to
identify and fi x errors.

If at all possible, you should provide completed portions of your application to users

so that they can test your code and provide feedback about the fl ow of the applica-

tion. Despite your best efforts to identify tasks and lay out a smooth task fl ow, users will

invariably think of new and better ways to approach a particular task after they’ve seen

your application in action. Also, users often discover that some features they asked you

to include are not so useful after all. Discovering a required change early in the imple-

mentation stage can save you a lot of time reworking things later.

The refi nement and revision process continues even after the application is put into use.
Most software developers recognize that after they’ve fi nished one “release,” they often
must make design changes and build enhancements. For major revisions, you should
start over at Step 1 to assess the overall impact of the desired changes so that you can
smoothly integrate them into your earlier work.

Typical Application Development Steps

Step 1: Identifying tasks

Step 2: Charting task fl ow

Step 3: Identifying data elements

Step 4: Organizing the data

Step 5: Designing a prototype and a user interface

Step 6: Constructing the application

Step 7: Testing, reviewing, and refi ning

INSIDE OUT Get Feedback from Your Users

If at all possible, you should provide completed portions of your application to users

so that they can test your code and provide feedback about the fl ow of the applica-

tion. Despite your best efforts to identify tasks and lay out a smooth task fl ow, users will

invariably think of new and better ways to approach a particular task after they’ve seen

your application in action. Also, users often discover that some features they asked you

to include are not so useful after all. Discovering a required change early in the imple-

mentation stage can save you a lot of time reworking things later.

INSIDE OUT

Typical Application Development Steps

Step 1: Identifying tasks

Step 2: Charting task fl ow

Step 3: Identifying data elements

Step 4: Organizing the data

Step 5: Designing a prototype and a user interface

Step 6: Constructing the application

Step 7: Testing, reviewing, and refi ning

A
rticle 1

A6 Article 1  Designing Your Database Application

ZR1623252.indd 6 2/21/2007 1:08:32 AM

An Application Design Strategy
The two major schools of thought on designing databases are process-driven design (also
known as top-down design), which focuses on the functions or tasks you need to per-
form, and data-driven design (also known as bottom-up design), which concentrates on
identifying and organizing all the bits of data you need. The method we describe here
incorporates some of the best ideas from both philosophies.

The method we like to use starts by identifying and grouping tasks to decide whether
you need only one database or more than one database. (This is a top-down approach.)
As explained previously, databases should be organized around a group of related
tasks, or functions. For each task, you choose the individual elements of data you need.
Next you gather all the data fi elds for all related tasks and begin organizing them into
subjects. (This is a bottom-up approach.) Each subject forms the foundation for the indi-
vidual tables in your database. Finally, you apply the rules you will learn in the “Data-
base Design Concepts” section of this article to create your tables.

Note
The examples in the rest of this article are based on the Conrad Systems Contacts sample

database application on the companion CD. In the chapters in this book, you can learn

how to build various parts of the application as you explore the architecture and features

of Offi ce Access 2007. Conrad Systems Contacts is not only a contacts management

application (Companies, People, Events, and Reminders) but also an order-entry applica-

tion (Products, Sales, and Invoices). As such, it is considerably more complex than the

Northwind Traders application that is included with Access 2007. It also employs many

techniques not found in the product documentation.

Analyzing the Tasks
Let’s assume that you’ve been hired by the owner of Conrad Systems to build a Con-
tacts and Sales Tracking database. The database application must allow the owner
to enter companies or organizations, the people in these companies, and the various
types of contacts a user within Conrad Systems made while marketing several software
products. If the contact results in a sale, the application should track the sale and print
invoices.

The fi rst design step you should perform is to list all the major tasks that this database
application must implement. A partial list might include the following:

l	 Enter company/organization data

l	 Enter person data

l	 Link persons with companies/organizations

Note
The examples in the rest of this article are based on the Conrad Systems Contacts sample

database application on the companion CD. In the chapters in this book, you can learn

how to build various parts of the application as you explore the architecture and features

of Offi ce Access 2007. Conrad Systems Contacts is not only a contacts management

application (Companies, People, Events, and Reminders) but also an order-entry applica-

tion (Products, Sales, and Invoices). As such, it is considerably more complex than the

Northwind Traders application that is included with Access 2007. It also employs many

techniques not found in the product documentation.

  An Application Design Strategy A7

A
rt

ic
le

 1

ZR1623252.indd 7 2/21/2007 1:08:33 AM

Oh No! Not Another Order-Entry Example!

You might have noticed that when you study database design—whether in a seminar, by

reading a book, or by examining sample databases—nearly all the examples (including

the one presented here) seem to be order-entry applications. There are several good

reasons why you encounter this sort of example over and over again.

l	 A large percentage of business-oriented database applications use the common

order-entry model. If you build a database, it’s likely to use this model.

l	 Using the order-entry model makes it easy to demonstrate good database design

techniques.

l	 At the core of the model, you’ll fi nd a many-to-many relationship example. (An

order might be for many products, and any one product can appear in many

orders.) Many-to-many relationships are common to most database applications

yet often trip up even the most seasoned computer user.

You might argue, “Wait a minute, I’m building a hospital patient tracking system, not an

order-entry system!” Or perhaps you’re creating a database to reserve rooms in corpo-

rate housing for employees visiting from out of town. (The Housing Reservations sample

database that is included with this book does this.) Aren’t you “selling” hospital beds to

patients? Isn’t reserving a room for an employee “selling” that room? If you look at your

business applications from this viewpoint, you’ll be able to compare your project to the

order-entry example with ease. Even if you’re writing a personal application to keep track

of your wine collection, you’re “selling” a rack position in your cellar to your latest bottle

purchase, and you’re probably also tracking the “supplier” of your purchases.

The concept of data subjects related to each other in a many-to-many fashion is impor-

tant in all but the simplest of database applications. This type of data relationship can be

found in nearly all business or personal database applications. For example, a particular

patient might need many different medications, and any one medication is administered

to many patients. A movie in your home collection has many starring actors, and any one

actor appears in many movies. As you’ll discover, a well-designed order-entry database

contains several many-to-many relationships.

l	 Indicate the primary contact person for a company and the primary company for
a person

l	 Enter product information

l	 Perform a company search

l	 Perform a person search

l	 Log a contact event with a person

l	 Sell a product during a contact event

l	 Create an invoice for products ordered

Oh No! Not Another Order-Entry Example!

You might have noticed that when you study database design—whether in a seminar, by

reading a book, or by examining sample databases—nearly all the examples (including

the one presented here) seem to be order-entry applications. There are several good

reasons why you encounter this sort of example over and over again.

l	 A large percentage of business-oriented database applications use the common

order-entry model. If you build a database, it’s likely to use this model.

l	 Using the order-entry model makes it easy to demonstrate good database design

techniques.

l	 At the core of the model, you’ll fi nd a many-to-many relationship example. (An many-to-many relationship example. (An many-to-many
order might be for many products, and any one product can appear in many

orders.) Many-to-many relationships are common to most database applications

yet often trip up even the most seasoned computer user.

You might argue, “Wait a minute, I’m building a hospital patient tracking system, not an

order-entry system!” Or perhaps you’re creating a database to reserve rooms in corpo-

rate housing for employees visiting from out of town. (The Housing Reservations sample

database that is included with this book does this.) Aren’t you “selling” hospital beds to

patients? Isn’t reserving a room for an employee “selling” that room? If you look at your

business applications from this viewpoint, you’ll be able to compare your project to the

order-entry example with ease. Even if you’re writing a personal application to keep track

of your wine collection, you’re “selling” a rack position in your cellar to your latest bottle

purchase, and you’re probably also tracking the “supplier” of your purchases.

The concept of data subjects related to each other in a many-to-many fashion is impor-many-to-many fashion is impor-many-to-many
tant in all but the simplest of database applications. This type of data relationship can be

found in nearly all business or personal database applications. For example, a particular

patient might need many different medications, and any one medication is administered

to many patients. A movie in your home collection has many starring actors, and any one

actor appears in many movies. As you’ll discover, a well-designed order-entry database

contains several many-to-many relationships.

A
rticle 1

A8 Article 1  Designing Your Database Application

ZR1623252.indd 8 2/21/2007 1:08:34 AM

l	 Print an invoice

l	 Log contact events after the sale

Figure A1-1 shows a blank application design worksheet that you should fill out for
each task.

Task Name:

Brief Description:

Related Tasks:

Data Name Usage Description Subject

APPLICATION DESIGN WORKSHEET #1 = TASKS

Figure A1-1  You can use an application design worksheet to help you describe tasks.

	 An Application Design Strategy	 A9

A
rt

ic
le

 1

ZR1623252.indd 9 2/21/2007 1:08:34 AM

Note
You can fi nd the Application Design Worksheet #1 in the Documents subfolder of the

fi les you install from the companion CD, in the ArticleA1-01.doc fi le. Worksheet #2 is in

the ArticleA1-02.doc fi le.

Consider the task of logging a new contact event (such as a letter received). For this
task, the user might need to search for the person or the person’s company. If the search
is by company, then the user should be able to look at a list of people who are contacts
for that company and select the specifi c person. The user should then be able to directly
enter the details about the letter received and schedule a follow-up if necessary. In this
particular application, Conrad Systems also wants to be able to log a sale as a contact
event and be able to easily specify the product sold as part of entering the event. The
program must also automatically create the related product sale record for the contact
when this happens.

Note
Some of the terminology we are using here might be a bit confusing. A “contact” might

be either a person (the person contacted) or an event (the telephone call or letter or

what have you). Throughout this book, we use contact to refer to the person and contact
event to refer to the action.

Data or Information?

You need to understand the difference between data and information before you start

building your data design. This bit of knowledge makes it easier for you to determine

what you need to store in your database.

Data is the set of static values you store in the tables of the database, while information is

data that is retrieved and organized in a way that is meaningful to the person viewing it.

You store data and you retrieve information. The distinction is important because of the

way that you construct a database application. You fi rst determine the tasks that are nec-

essary (what information you need to be able to retrieve), and then you determine what

must be stored in the database to support those tasks (what data you need in order to

construct and supply that information).

Whenever you refer to or work with the structure of your database or the items stored

in the tables, queries, macros, or code, you’re dealing with data. Likewise, whenever you

refer to or work with query records, fi lters, forms, or reports, you’re dealing with infor-

mation. The process of designing a database and its application becomes clearer once

you understand this distinction. Unfortunately, these two terms are ones that folks in

the computer industry have used interchangeably. But armed with this new knowledge,

you’re ready to tackle data design.

Note
You can fi nd the Application Design Worksheet #1 in the Documents subfolder of the

fi les you install from the companion CD, in the ArticleA1-01.doc fi le. Worksheet #2 is in

the ArticleA1-02.doc fi le.

Note
Some of the terminology we are using here might be a bit confusing. A “contact” might

be either a person (the person contacted) or an event (the telephone call or letter or

what have you). Throughout this book, we use contact to refer to the person and contact to refer to the person and contact contact
event to refer to the action.event to refer to the action.event

Data or Information?

You need to understand the difference between data and information before you start

building your data design. This bit of knowledge makes it easier for you to determine

what you need to store in your database.

Data is the set of static values you store in the tables of the database, while information is

data that is retrieved and organized in a way that is meaningful to the person viewing it.

You store data and you retrieve information. The distinction is important because of the

way that you construct a database application. You fi rst determine the tasks that are nec-

essary (what information you need to be able to retrieve), and then you determine what

must be stored in the database to support those tasks (what data you need in order to

construct and supply that information).

Whenever you refer to or work with the structure of your database or the items stored

in the tables, queries, macros, or code, you’re dealing with data. Likewise, whenever you

refer to or work with query records, fi lters, forms, or reports, you’re dealing with infor-

mation. The process of designing a database and its application becomes clearer once

you understand this distinction. Unfortunately, these two terms are ones that folks in

the computer industry have used interchangeably. But armed with this new knowledge,

you’re ready to tackle data design.

A
rticle 1

A10 Article 1  Designing Your Database Application

ZR1623252.indd 10 2/21/2007 1:08:36 AM

Selecting the Data
After you identify all the tasks, you must list the data items you need in order to per-
form each task. On the task worksheet, you enter a name for each data item, a usage
code, and a brief description. In the Usage column, you enter one or more usage
codes—I, O, U, D, and C—which stand for input, output, update, delete, and calculate. A
data item is an input for a task if you need to read it from the database (but not update
it) to perform the task. For example, a contact person name and address are some of the
inputs needed to create a contact event. Likewise, data is an output for a task if it is new
data that you enter as you perform the task or that the task calculates and stores based
on the input data. For example, the payment due date of an invoice is an output; quan-
tity sold and the selling price for a product in a new order are outputs as well.

You update data in a task if you read data from the database, change it, and write it back.
A task such as recording a company’s change of address would input the old address,
update it, and write the new one back to the database. As you might guess, a task deletes
data when it removes the data from the database. In the Contacts database, you might
have a task to remove a product from the list of products owned by a contact person if
that person decides to return the product. Finally, calculated data creates new values
from input data to be displayed or printed but not written back to the database.

In the Subject column of the task worksheet, you enter the name of the subject to which
you think each data element belongs. For example, an address might belong to a Con-
tact. A completed application design worksheet for the Enter a Contact Event task might
look like the one shown in Figure A1-2.

You might be wondering why we appear to have duplicate data here—ContactEvent
RequiresFollowUp and ContactFollowUp or ContactEventFollowUpDays and Contact
FollowUpDate. The two ContactEvent data elements define the default actions that
should occur for a particular type of event, and the two Contact fields are items that
should be calculated by the application whenever the user chooses an event that
requires a follow-up. The latter is something we call point-in-time data, which we discuss
later in this article. You might not be able to spot this sort of subtle distinction as you
first start to document your tasks, but you’ll sort it out later in the design process as you
finalize your table design following the rules we list in “Normalization Is the Solution.”

Organizing Tasks
You should use task worksheets as a guide in laying out an initial structure for your
application. Part of the planning you do on these worksheets is to consider usage—
whether a piece of data might be needed as input, for updating, or as output of a
given task.

Wherever you have something that is required as input, you should have a precedent
task that creates that data item as output. For example, for the worksheet shown in
Figure A1-2, you must gather company, contact, and product data before you can record
a contact event. Similarly, you need to create the contact event type data in some other
task before you can use that data in this task. Therefore, you should have a task for gath-
ering basic company data, a task for entering basic contact person data, a task for creat-
ing product data, and a task for defining contact event types. It’s useful to lay out all
your defined tasks in a relationship diagram. You can see relationships among the tasks

	 An Application Design Strategy	 A11

A
rt

ic
le

 1

ZR1623252.indd 11 2/21/2007 1:08:36 AM

in the Conrad Systems Contacts database in Figure A1-3. When one task is optionally
precedent to another task, the two tasks are linked with dashed lines. For example, you
do not have to define all products before you define simple contact event types. You can
create an event for a contact (but you can’t sell a product in that event) before you define
the default company for a contact.

Task Name: Enter a contact event

Brief Description: Search for contact person

Add event to person

Related Tasks: Company add / edit, Contact person add / edit

Contact event type add / edit, Contact product add / edit*

Product add / edit

Data Name Usage Description Subject

ContactID I, O ID of the contact for the event Contacts

ContactDateTime O Date and time of the contact event ContactEvents

ContactEventTypeID I, O ID of the type of contact event ContactEventTypes

ContactEventTypeDesc I Description of the contact type ContactEventTypes

ContactEventRequires-
FollowUp

I Follow-up flag ContactEventTypes

ContactEventFollowUp-
Days

I Default number of days in future for
follow-up

ContactEventTypes

ContactEventProduct-
Sold

I Flag indicating a product sale event ContactEventTypes

ContactEventProductID I Unique ID of the product sold Products

ContactNotes O Notes about the contact event ContactEvents

ContactFollowUp O Flag indicating follow-up required ContactEvents

ContactFollowUpDate O Date the follow-up should occur ContactEvents

*Additional items if
ContactEventProduct-
Sold is true.

CompanyID I, O ID of the default company for this
contact person

Companies

ProductID I, O ID of the product sold Products

DateSold O Date the product was sold ContactProducts

SoldPrice O Price charged for the product ContactProducts

APPLICATION DESIGN WORKSHEET #1 = TASKS

Figure A1-2  A completed worksheet for the Enter a Contact Event task might look like this.

A
rticle 1

A12	 Article 1  Designing Your Database Application

ZR1623252.indd 12 2/21/2007 1:08:36 AM

Enter Company
Data

Enter Contact
Data

Link Companies
and Contacts

Enter Contact
Events

Sell a Product
to a Contact

Search for
Companies

Search for
Contacts

Define Contact
Event Types

Enter Product
Data

Create / Edit
Invoices

Search for
Invoices

Print an
Invoice

A

A

Figure A1-3  This diagram shows the relationships among tasks in the Conrad Systems Contacts
database.

Data Analysis
Now you’re ready to begin a more thorough analysis of your data and to organize the
individual elements into data subjects. These subjects become candidates for tables in
your database design.

Choosing the Database Subjects
If you’ve been careful in identifying the subject for each data item you need, the next
step is very easy. You create another worksheet, similar to the worksheet shown in Fig-
ure A1-4, to help you collect all the data items that belong to each subject. In the top
part of the worksheet, you list the related subjects that appear in any given task and
indicate the kind of relationship.

	 Data Analysis	 A13

A
rt

ic
le

 1

ZR1623252.indd 13 2/21/2007 1:08:36 AM

Subject Name:

Brief Description:

Related Subjects: Name Relationship

Data Name Data Type Description Validation Rule

APPLICATION DESIGN WORKSHEET #2 = SUBJECTS

Figure A1-4  This application design worksheet will help to identify related subjects.

If there are potentially many instances of the related subject for one instance of the
current subject (for example, many contacts within a company), enter Many in the
Relationship column. If there is potentially only one instance of the related subject to
one instance of the current subject (for example, one and only one contact refers a com-
pany), enter One in the Relationship column. For details about relationship types, see
“Efficient Relationships Are the Result” on page A27.

A
rticle 1

A14	 Article 1  Designing Your Database Application

ZR1623252.indd 14 2/21/2007 1:08:36 AM

It’s important to understand these relationships because they have a significant effect
on the database structure and on how you work with two related subject tables in
Access. If you take care in filling out and revising your worksheets, you can ultimately
use each worksheet to create a table in Access. You’ll learn more about these relation-
ships later in this article.

You can see a completed worksheet for the Companies subject in Figure A1-5.

Subject Name: Companies

Brief Description: Information about companies / organizations to which contact persons
are related.

Related Subjects: Name

CompanyContacts

Invoices

Contacts

Relationship

Many

Many

One (contact referring this Company)

Data Name Data Type Description Validation Rule

CompanyID Autonumber Company identifier Required (P Key)

CompanyName Text (50) Name of the company or
organization

Is Not Null

Department Text (50) Optional department
name

Address Text (255) Street address

City Text (50) City

County Text (50) County

StateOrProvince Text (20) State or province

PostalCode Text (20) Postal code 00000\-9999

Country Text (50) Country

PhoneNumber Text (30) Phone !\(999") "000\-0000

FaxNumber Text (30)

Hyperlink

Phone !\(999") "000\-0000

WebSite Website address

ReferredBy Number, Long Contact who referred
this company /
organization.

RI rule – child of
Contacts

APPLICATION DESIGN WORKSHEET #2 = SUBJECTS

Figure A1-5  Here is a completed worksheet for the Companies subject.

	 Data Analysis	 A15

A
rt

ic
le

 1

ZR1623252.indd 15 2/21/2007 1:08:36 AM

As you copy each data item to the subject worksheet, you designate the data type (Text,
Number, Currency, Memo, and so on) and the data length in the Data Type column.
You can enter a short descriptive phrase for each data item in the Description column.
When you create your table from the worksheet, the description is the default informa-
tion that Access will display on the status bar at the bottom of the screen whenever the
fi eld is selected on a datasheet or in a form or a report.

Finally, in the Validation Rule column, you should make a note of any validation rules
or input mask restrictions that always apply to the data fi eld. Later, you can defi ne these
rules in Access, and Access will check each time you create new data to ensure that you
haven’t violated any of the rules. Validating data can be especially important when you
create a database application for other people to use.

Mapping Subjects to Your Database
After you fi ll out all of the subject worksheets, each worksheet becomes a candidate to
be a table in your database. For each table, you must confi rm that all the data you need
is included. You should also be sure that you don’t include any unnecessary data.

For example, if any customers need more than one line for an address, you should con-
sider adding a second data fi eld. If you expect to have more than one type of product
category (in Conrad Systems’ case, they sell Single, Multi-User, and Remote versions of
their software as well as support for each), you should create a separate worksheet for
product categories that you’ll use to defi ne a table that contains records for each prod-
uct type. In the next section, you’ll learn how to use four simple rules to create a fl exible
and logical set of tables from your subject worksheets.

Database Design Concepts
When using a relational database system such as Access 2007, you should begin by
designing each database around a specifi c set of tasks or functions. For example, you
might design one database for customers and orders that contains data about each
customer, the products available for sale, the orders for each customer, and the product
sales history. You might have another database that handles human resources for your
company. It would contain all relevant data about the employees and their dependents,
such as names, job titles, employment histories, departmental assignments, insurance
information, and the like.

If you have fi lled out the subject worksheets for your application before you start this

process, it’s a good idea to go back and make any necessary corrections to those work-

sheets as you follow the rules in this section to refi ne your table structure. At the end of

the process, each subject worksheet should map to exactly one table.

INSIDE OUT Review Your Work

If you have fi lled out the subject worksheets for your application before you start this

process, it’s a good idea to go back and make any necessary corrections to those work-

sheets as you follow the rules in this section to refi ne your table structure. At the end of

the process, each subject worksheet should map to exactly one table.

INSIDE OUT
A

rticle 1

A16 Article 1  Designing Your Database Application

ZR1623252.indd 16 2/21/2007 1:08:37 AM

At this point, you face your biggest design challenge: How do you organize data within
each task-oriented database so that you take advantage of the relational capabilities of
Access and avoid ineffi ciency and waste? If you followed the steps outlined earlier in
this article for analyzing application tasks and identifying database subjects, you’re well
on your way to creating a logical, fl exible, and usable database design. But what if you
just dove in and started laying out your tables without fi rst analyzing tasks and sub-
jects? The rest of this article shows you how to apply some rules to transform a make-
shift database design into one that is robust and effi cient.

Waste Is the Problem
A table stores the data you need for the tasks you want to perform. A table is made up
of columns, or fi elds, each of which contains a specifi c kind of data (such as a customer
name or a credit rating), and rows, or records, that collect all the data about a particular
person, place, or thing. You can see this organization in the Companies table in the
Conrad Systems Contacts database, as shown in Figure A1-6.

Figure A1-6  The Companies table in Datasheet view is an example of how data is organized in 
a table.

Note
The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fi ctitious. No association with any

real company, organization, product, domain name, e-mail address, logo, person, place,

or event is intended or should be inferred.

For the purposes of this design exercise, let’s say you want to build a new database
(named Contacts) for tracking contacts, contact events, and products sold during
contact events without the benefi t of fi rst analyzing the tasks and subjects you’ll need.
You might be tempted to put all the data about the task you want to do—keeping track

Note
The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fi ctitious. No association with any

real company, organization, product, domain name, e-mail address, logo, person, place,

or event is intended or should be inferred.

  Database Design Concepts A17

A
rt

ic
le

 1

ZR1623252.indd 17 2/21/2007 1:08:38 AM

of customers and their contacts with you and the products they might buy during a
contact—in a single Contact Events table, whose fields are represented in Figure A1-7.

Contact
Date

Company
Name

Company Address,
City, State, Zip

Company
Phone

Company
Website

Contact
Name

Contact
Address,City,
State, Zip

Contact
Phone

Contact Events

Contact
Event
Time1

Contact
Event
Notes1

Follow-
Up Date1

Product
Category1

Product
Name1

Product
Price1

Contact
Event
Time2

Contact
Event
Notes2

Follow-
Up Date2

Product
Category2

Product
Name2

Product
Price2 . . .

Contact
Event
TimeN

Contact
Event
NotesN

Follow-
Up DateN

Product
CategoryN

Product
NameN

Product
PriceN

Invoice
Number

Invoice
Date

Invoice
Total

Figure A1-7  This design for the Contacts database uses a single Contact Events table.

There are many problems with this technique. For example:

l	 Every day that a contact calls you, you have to duplicate the Company Name,
Company Address, Contact Name, and Contact Address fields in another record
for the new contact event. Repeatedly storing the same name and address in your
database wastes a lot of space—and you can easily make mistakes if you have to
enter basic information about a contact more than once.

l	 You have no way of predicting how many contact events you’ll have in a given
day or how many products might be ordered. If you keep track of each day’s
contact events in a single record, you have to guess the largest number of indi-
vidual events and products and leave space for Event Time 1, Event Time 2,
Event Time 3, Product Name 1, Product Name 2, and so on, all the way to the
maximum number. Again, you’re wasting valuable space in your database. If you
guess wrong, you’ll have to change your design just to accommodate a day when
a contact calls you (or you call them) more times than you have allocated in your
record. And later, if you want to find out what products were sold to which con-
tacts, you’ll have to search each Product Name field in every record.

l	 You have to waste space in the database storing data that can easily be calculated
when it’s time to print a report. For example, you’ll certainly want to calculate the
total invoice amount, but you do not need to keep the result in a field.

l	 Designing one complex field to contain all the parts of simple data items (for
example, lumping together Street Address, City, State, and Postal Code) makes
it difficult to search or sort on part of the data. In this example, it would be

A
rticle 1

A18	 Article 1  Designing Your Database Application

ZR1623252.indd 18 2/21/2007 1:08:39 AM

impossible to sort on company or contact postal code because that piece of infor-
mation might appear anywhere within the more complex single address fields.

Normalization Is the Solution
You can minimize the kinds of problems just noted (although it might not always be
desirable to eliminate all duplicate values), by using a process called normalization to
organize data fields into a group of tables. The mathematical theory behind normaliza-
tion is rigorous and complex, but the tests you can apply to determine whether you
have a design that makes sense and that is easy to use are quite simple—and can be
stated as rules.

Field Uniqueness

Because wasted space is one of the biggest problems with an unnormalized table
design, it makes sense to remove redundant fields from a table. So the first rule is about
field uniqueness.

Rule 1: Each field in a table should represent a unique type of information.  This
means that you should break up complex compound fields and get rid of the repeat-
ing groups of information. In this example, you should separate the complex address
fields into simple fields and new tables designed to eliminate the repeating contact
event and product information. When you create separate tables for the repeating data,
you include some “key” information from the main table to create a link between the
new tables and the original one. One possible result might look like the diagram in
Figure A1-8.

Contacts

Company
Name

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Contact
Name

Contact
Phone

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Email

Contact Events

Contact
Event
Time

Contact
Event
Notes

Follow-
Up
Date

Product
Category

Product
Name

Product
Price

Company
Name

Contact
Name

Contact
Date

Invoice
Number

Invoices

Invoice
Number

Invoice
Date

Invoice
Total

Company
Name

Figure A1-8  This design for the Contacts database eliminates redundant fields.

	 Database Design Concepts	 A19

A
rt

ic
le

 1

ZR1623252.indd 19 2/21/2007 1:08:39 AM

These tables are much simpler because you can store one record per contact event. Also,
you don’t have to reserve room in your records to hold a large number of events per day
per contact. All the lengthy address information is now in a separate table so that you
don’t have to repeat it for each event. Because an invoice might cover multiple products
purchased, there’s also a separate table for that. Notice that the Contact Events table
includes certain key information to link it to the Contacts table (Company Name and
Contact Name) and to the Invoices table (Invoice Number).

Searching and sorting the information will now also be easier. You can sort the Con-
tacts records on postal code or do a search on the separate city and state fields. Can you
spot a field that we failed to break up into separate elements? If your answer is the Con-
tact Name field, you’re correct! As you’ll see in the final solution, we need to break this
field into at least separate First Name and Last Name fields.

The duplicate data problem is now somewhat worse because you are repeating the Com-
pany Name and Contact Name fields in each Contact Events record. This duplicate data
is necessary, however, to maintain the links between the tables. The potentially long
Product Name field is also redundant in the Contact Events table—when you sell the
same product more than once, the Product Name will appear in multiple rows. (Maybe
Products should have a separate table?) What happens if you misspell a product name
in one of the rows? Will you be able to find all contacts who bought the same product?
You can solve this problem by following the second rule.

Primary Keys

In a good relational database design, each record in any table must be uniquely identi-
fied. That is, some field (or combination of fields) in the table must yield a unique value
for each record in the table. This unique identifier is called the primary key.

Rule 2: Each table must have a unique identifier, or primary key, that is made up
of one or more fields in the table.  Whenever possible, you should use the simplest
data that naturally provides unique values. You should always be able to find a field
or some combination of fields whose values are unique across all rows. (In relational
design terminology, these are called candidate keys.) You should consider the simplest
combination of fields as the best candidate to be your primary key. However, in the case
of the Contacts table as currently designed in Figure A1-8, you would probably need a
combination of Company Name, Contact Name, and perhaps one of the contact address
or city fields to guarantee uniqueness. When this happens, it is preferable to generate
an artificial unique ID field to use as the primary key (Contact ID). However, you might
want to add code in your final application that checks for a potential duplicate name
(another record previously saved that has the same name as the new record about to
be saved) and warns the user before inserting a new unique record. Access provides a
handy data type called AutoNumber to make it easy to create a unique ID field like Con-
tact ID. You can learn more about the AutoNumber data type in Chapter 4, “Creating
Your Database and Tables.”

After we assign Contact ID as the primary key of the Contacts table, it becomes much
easier to link a contact with a contact event by substituting Contact ID for the Company
Name and Contact Name fields in the Contact Events table. Although Contact ID in the

A
rticle 1

A20	 Article 1  Designing Your Database Application

ZR1623252.indd 20 2/21/2007 1:08:39 AM

Contact Events table perhaps looks like duplicate information, it’s really the link that
you can use to associate or relate the rows from the two tables. Relational databases are
equipped to support this design technique by giving you powerful tools to bring related
information back together easily. You can learn more about these tools in Chapter 8,
“Creating and Working with Simple Queries.”

A common mistake would be to create another ID field to uniquely identify the rows in
Contact Events. Now with the addition of Contact ID, it’s easy to see that the combina-
tion of Contact ID, Contact Date, and Contact Event Time are most likely unique to
each row, so we should use the this combination of elements as a natural primary key.
For the new Invoices table, the choice is simple. Invoice Number might be an AutoNum-
ber ID field, but it is probably a unique number entered by the user when creating a
new invoice record. Some companies like to use a year prefix combined with a unique
sequence number within the year as an invoice number. The Invoice Number is still in
the Contact Events table to identify which products were billed on what invoice num-
ber. You can see the result of adding primary keys in Figure A1-9.

Contacts

Company
Name

Contact
ID

Primary Key

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Contact
Name

Contact
Phone

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Email

Invoices

Invoice
Number

Invoice
Date

Invoice
Total

Company
Name

Primary Key

Contact Events

Contact
Event
Time

Contact
Event
Notes

Follow-
Up Date

Product
Category

Product
Name

Product
Price

Contact
ID

Contact
Date

Invoice
Number

Primary Key

Figure A1-9  The Conrad Systems Contacts database tables now have primary keys defined.

Functional Dependence

Defining a primary key helps you better identify the true subject of the table. Now, you
can check to see whether you included all the data relevant to the subject of the table

	 Database Design Concepts	 A21

A
rt

ic
le

 1

ZR1623252.indd 21 2/21/2007 1:08:40 AM

and whether each of the fields in the table describes an attribute of the subject (and not
some other subject). In relational terminology, you should check to see whether each
field is functionally dependent on the primary key that defines the subject of the table.

Rule 3: For each unique primary key value, the values in the data columns must
be relevant to, and must completely describe, the subject of the table.  This rule
works in two ways. First, you shouldn’t have any data in a table that is not relevant to
the subject (as defined by the primary key) of the table. Second, the data in the table
should completely describe the subject.

Let’s start by looking at the Contacts table as defined in Figure A1-9. The subject of this
table is the people who are our contacts. We certainly need to know the company or
organization with which a person is associated. What if a person has more than one
such association? For example, a person might work for a company but also be a mem-
ber of one or more professional organizations. We certainly do not want to repeat the
contact name and personal address information multiple times for each different asso-
ciation. Is the company information in a contact row unique to the individual defined
by that row? Probably not. Even if we’re certain that a person is associated with only
one company or organization, we’ll have to duplicate the company information in mul-
tiple rows when a company has more than one person associated with it.

The solution is to identify companies (organizations) as a separate subject with its own
unique identifier. If a person is related to one and only one company, we can place a
linking copy of the Company ID in the Contacts table. In this case, let’s assume that a
person can be related to more than one company or organization. A company has many
persons, and a person might belong to many companies or organizations. In relational
terminology, this is called a many-to-many relationship, which you can read more about
later in this article. To define this in our table design, we need a linking table that stores
the multiple relationships of the companies and people—a table called Company Con-
tacts. While we’re at it, let’s refine the Contact Name field by splitting it into separate
First Name and Last Name fields (so we can sort and search by just the last name), and
let’s complete the Company Contacts table by adding an indicator field that defines
which company is the primary one for the contact.

Now, we should turn our attention to the Contact Events table. In the table shown in
Figure A1-9, we have not only information about the event but also information about
a product that might be sold during the event. In fact, the user of this database might
make many calls or mail out many brochures or letters before actually selling a product.
The product information isn’t fully functionally dependent on the subject of this table,
so it needs to be in a separate subject table. In fact, a product is not going to be pur-
chased by an individual contact—it will be bought by the contact’s primary company or
organization.

So, we also need to create a separate Contact Products table to store the products a con-
tact might purchase after dozens of contacts. This table should have all the information
relevant to a company purchasing a product for an employee, but nothing extra. This

A
rticle 1

A22	 Article 1  Designing Your Database Application

ZR1623252.indd 22 2/21/2007 1:08:40 AM

moves the extra product information from the old Contact Events table and makes the
fields in that table relevant only to events and nothing else.

Finally, we should completely define the Invoices subject by adding other relevant infor-
mation such as the purchasing company’s purchase order number, the date the invoice
payment is due, and an indicator field to mark when the invoice is paid. You can see the
result of applying the rule in this step in Figure A1-10.

Companies

Contact Products

Company
ID

Contact
ID

Product
Name

Product
Category

Date
Sold

Product
Price

Invoice
Number

Invoices

Company
ID

Invoice
Number

PO
Number

Invoice
Date

Invoice
Due

Invoice
Paid

Invoice
Total

Contact Events

Contact
ID

Contact
Date

Contact
Event
Time

Follow-
Up Date

Contact
Event
Notes

Contacts

Contact
ID

Contact
Last
Name

Contact
First
Name

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Phone

Contact
Email

Company Contacts

Company
ID

Contact
ID

Position Primary for
Contact

Company
Name

Company
ID

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Figure A1-10  Creating additional subject tables in the Conrad Systems Contacts database ensures
that all fields in a table are functionally dependent on the primary key of the table.

	 Database Design Concepts	 A23

A
rt

ic
le

 1

ZR1623252.indd 23 2/21/2007 1:08:40 AM

Field Independence

The last rule checks to see whether you’ll have any problems when you make changes to
the data in your tables.

Rule 4: You must be able to make a change to the data in any field (other than to a
field in the primary key) without affecting the data in any other field.  Take a look
again at the Contact Products table in Figure A1-10. As we applied the second and third
rules, we left product information with the Contact Products information because it
seems reasonable that you need to know about the product sold to a contact. Note that
if you need to correct the spelling of a product name, you can do so without affecting
any other fields in that record. If you misspelled the same product name for many con-
tact products, however, you might have to change many records. Also, if you entered the
wrong product (for example, an order is actually for a Single-User edition, not a Multi-
User edition), you can’t change the product name without also changing that record’s
category and pricing information.

The Product Category, Product Name, and Product Price fields are not independent of
one another. In fact, Product Category and Product Price are functionally dependent on
Product Name. (See Rule 3.) Although it wasn’t obvious at first, Product Name describes
another subject that is different from the subject of contact products. You can see how
carefully applying this fourth rule helps you identify changes that you perhaps should
have made when applying earlier rules. This situation calls for another table in your
design: a separate Products table, as shown in Figure A1-11.

Now, if you misspell a product name, you can simply change the product name in the
Products table. Also, instead of using the Product Name field (which might be 40 or
50 characters long) as the primary key for the Products table, you can create a shorter
Product ID field (perhaps a five-digit number) to minimize the size of the relational data
you need in the Contact Products table.

Note also that we removed the Invoice Total field from the Invoices table because any
change to a price in Contact Products would make this value incorrect. The database
is not going to maintain this calculated value for you, so you would have to write extra
code in your application to recalculate and update the value each time a contact ordered
another product. It’s a simple matter to build a query to sum the product prices for
the records related to an invoice to calculate the total owed. (See Chapter 7, “Creating
and Working with simple Queries,” and Chapter 8 for details.) You can also calculate
the total invoice value when the invoice is complete—perhaps as part of the report that
prints the invoice.

An alternative (but less rigorous) way to check for field independence is to see whether
you have the same data repeated in your records. In the previous design, whenever you
created a sale for a particular product during a contact event, you had to enter the prod-
uct’s name, category, and price in the record. With a separate Products table, if you need
to correct a product name spelling or change a list price or product category, you have
to make the change only in one field of one record in the Products table. If you entered
the wrong product in a contact product record, you have to change only the Product ID
to fix the problem.

A
rticle 1

A24	 Article 1  Designing Your Database Application

ZR1623252.indd 24 2/21/2007 1:08:40 AM

Companies

Contact Products

Company
ID

Contact
ID

Product
ID

Date
Sold

Product
Sold
Price

Invoice
Number

Products

Product
ID

Product
Category

Product
Name

Product
Price

Invoices

Company
ID

Invoice
Number

PO
Number

Invoice
Date

Invoice
Due

Invoice
Paid

Contact Events

Contact
ID

Contact
Date

Contact
Event
Time

Follow-
Up Date

Contact
Event
Notes

Contacts

Contact
ID

Contact
Last
Name

Contact
First
Name

Contact
Address

Contact
City

Contact
State

Contact
Postal Code

Contact
Phone

Contact
Email

Company Contacts

Company
ID

Contact
ID

Position Primary for
Contact

Company
Name

Company
ID

Company
Phone

Company
Website

Company
Address

Company
City

Company
State

Company
Postal Code

Figure A1-11  This design for the Conrad Systems Contacts database follows all the design rules.

Note that we added a new field, a separate Product Sold Price in the Contact Products
table. Why not link to the new Products table to find out the price? Why isn’t this dupli-
cate data that violates Rule 1? This is an example of why it is very important to under-
stand how the business runs. In this case, Conrad Systems sometimes offers a discount

	 Database Design Concepts	 A25

A
rt

ic
le

 1

ZR1623252.indd 25 2/21/2007 1:08:41 AM

off “list price” to a company that purchases multiple copies of Conrad Systems’ prod-
ucts. The price in the Contact Products table is the actual sales price that the user enters
when the company buys the product. You can learn more about the concept of such
point-in-time data later in this article.

The actual Conrad Systems Contacts sample database includes 10 tables, which are all
shown in the Relationships window in Figure A1-12. Notice that we created additional
fields in each table to fully describe the subject of each table and we added other tables
to support some of the other tasks identified earlier in this section. For example, many
fields were added to both the Companies and Contacts tables to fully capture all the
pertinent information about those subjects. There are also three lookup tables to help
ensure accurate data entry and to provide additional information about the nature of
some classification codes.

A lookup table helps you restrict the list of values that are valid for a field in a main
table, and they might also contain additional fields that help further define the mean-
ing of each value in the list. You can learn more about defining lookup properties in
Chapter 4.

Figure A1-12  The tables in the Conrad Systems Contacts sample database are shown in the
Relationships window.

A
rticle 1

A26	 Article 1  Designing Your Database Application

ZR1623252.indd 26 2/21/2007 1:08:41 AM

The Four Rules of Good Table Design

Rule 1: Each fi eld in a table should represent a unique type of information.

Rule 2: Each table must have a unique identifi er, or primary key, that is made up of one or

more fi elds in the table.

Rule 3: For each unique primary key value, the values in the data columns must be rel-

evant to, and must completely describe, the subject of the table.

Rule 4: You must be able to make a change to the data in any fi eld (other than to a fi eld

in the primary key) without affecting the data in any other fi eld.

Effi cient Relationships Are the Result
When you apply good design techniques, you end up with a database that effi ciently
links your data. You probably noticed that when you normalize your data as recom-
mended, you tend to get many separate tables. Before relational databases were
invented, you had to either compromise your design or manually keep track of the
relationships between fi les or tables. For example, you had to put company data in your
contacts and invoices tables or write your program to fi rst open and read a record from
one table and then search for the matching record in the related table. Relational data-
bases solve these problems. With a good design you don’t have to worry about how to
bring the data together when you need it.

Foreign Keys

You might have noticed as you followed the Conrad Systems Contacts design example
that each time we created a new table, we left behind in the other table a fi eld that could
link the two, such as the Company ID, Contact ID, and Product ID fi elds in the Con-
tact Products table. The Invoice Number fi eld in Contact Products is also a link to the
Invoices table. These “linking” fi elds are called foreign keys.

In a well-designed database, foreign keys result in effi ciency. You keep track of related
foreign keys as you lay out your database design. When you defi ne your tables in
Access, you link primary keys to foreign keys to tell Access how to join the data when
you need to retrieve information from more than one table. You can also ask Access to
maintain the integrity of your table relationships—for example, Access will ensure that
you don’t create a contact event for a contact that doesn’t exist. When you ask Access to
maintain this referential integrity, Access automatically creates indexes for you. Indexes
help Access fi nd data more quickly when you’re searching, fi ltering, or linking data.

For details about referential integrity and defi ning indexes, see Chapter 4.

The Four Rules of Good Table Design

Rule 1: Each fi eld in a table should represent a unique type of information.

Rule 2: Each table must have a unique identifi er, or primary key, that is made up of one or

more fi elds in the table.

Rule 3: For each unique primary key value, the values in the data columns must be rel-

evant to, and must completely describe, the subject of the table.

Rule 4: You must be able to make a change to the data in any fi eld (other than to a fi eld

in the primary key) without affecting the data in any other fi eld.

For details about referential integrity and defi ning indexes, see Chapter 4.

  Database Design Concepts A27

A
rt

ic
le

 1

ZR1623252.indd 27 2/21/2007 1:08:42 AM

One-to-Many and One-to-One Relationships

In most cases, the relationship between any two tables is one-to-many. That is, for any
one record in the first table, there are many related records in the second table; but for
any record in the second table, there is exactly one matching record in the first table.
You can see several instances of this type of relationship in the design of the Conrad
Systems Contacts database. For example, each company might have several invoices,
but a single invoice record applies to only one company.

Occasionally, you might want to break down a table further because you use some of
the data in the table infrequently or because some of the data in the table is highly
sensitive and should not be available to everyone. For example, you might want to keep
track of certain company data for marketing purposes, but you don’t need access to that
data all the time. Or you might have data about credit ratings that should be accessible
only to authorized people. In either case, you can create a separate table that also has
a primary key of Company ID. The relationship between the original Companies table
and the Company Info or Company Credit table is one-to-one. That is, for each record
in the first table, there is exactly one record in the second table.

Creating Table Links

The last step in designing your database is to create the links between your tables. For
each subject, identify those for which you wrote Many under Relationship on the work-
sheet. Be sure that the corresponding relationship for the other table is One. If you see
Many in both places, you must create a separate linking table to handle the relationship.
(Access won’t let you define a many-to-many relationship directly between two tables.)
In the example of the Add/Edit a Contact task, a contact might be associated with many
companies or organizations, and a company most likely has many contacts. The Com-
pany Contacts table in the Conrad Systems Contacts database is a linking table that
clears up this many-to-many relationship between companies and contacts. Contact
Products is another table that works as an intersection table because it has a one-to-
many relationship with both Contacts and Products. (A contact might purchase several
products, and a product is most likely owned by many contacts.)

After you straighten out the many-to-many relationships and create additional subject
worksheets to reflect the linking tables, you need to create the links between subjects.
To complete the links, you should place a copy of the primary key from the one subject
into a field in the many subject. For example, by looking at the worksheet for Compa-
nies shown in Figure A1-5, you can surmise that the primary key for the Companies
subject, Company ID, also needs to be a field in the Company Contacts and Invoices
subjects.

When to Break the Rules
As a starting point, for every application that you build, you should always analyze the
tasks you need to perform, decide on the data required to support those tasks, and cre-
ate a well-designed (also known as normalized) database table structure. After you have

A
rticle 1

A28	 Article 1  Designing Your Database Application

ZR1623252.indd 28 2/21/2007 1:08:42 AM

a design that follows all the rules, you might discover changes that you need to make
either to follow specific business rules or to make your application more responsive
to the needs of your users. In every case for which you decide to “break the rules,” you
should know the specific reason for doing so, document your actions, and be prepared
to add procedures to your application to manage the impact of those changes. The fol-
lowing sections discuss some of the reasons why you might need to break the rules.

Improving Performance of Critical Tasks
The majority of cases for breaking the rules involve manipulating the design to achieve
better performance for certain critical tasks. For example, although modern relational
database systems (like Access) do a good job of linking many related tables to perform
complex tasks, you might encounter situations in which the performance of a multiple-
table link (also called a joined query—see Chapter 8 for details) is not fast enough. Some-
times if you denormalize selected portions of the design, you can achieve the required
performance. For example, instead of building a separate table of product category
codes that requires a link, you might place the category descriptions directly in the
products table. If you choose to do this, you will need to add procedures to the forms
you provide to enter these categories to make sure that any similar descriptions aren’t
duplicate entries. We chose to do this in the Conrad Systems Contacts database, and
we solved the problem by using a combo box that allows the user to choose a value only
from a validated list in another table. You’ll learn more about working with combo box
controls in Chapter 12, “Building a Form.”

Another case for breaking the rules is the selective inclusion of calculated values in
your database. For example, if a critical management report needs the calculated totals
for all orders in a month, but the data is retrieved too slowly when calculating the
detailed values for thousands of product purchase records per order and thousands of
orders, you might want to add a field for order total in the Orders or Invoices table. Of
course, this also means adding procedures to your order-entry forms to ensure that any
change in an order detail record is reflected immediately in the calculated order total.
Your application will spend a few extra fractions of a second processing each order so
that month-end totals can be obtained quickly.

Capturing Point-in-Time Data
Sometimes you need to break the rules to follow known business rules. In the previ-
ous design exercise, we considered removing the Price field from the Contact Products
table because it duplicated the price information in the Products table. However, if your
business rules say that the price of a product can change over time, you might need to
include the price in your order details to record the price at the point in time that the
order was placed. If your business rules dictate this sort of change, you should add pro-
cedures to your application to automatically copy the “current” price to any new order
detail row.

You can see another case in the Conrad Systems Contacts database. Some of the bill-
ing address information in the Invoices table looks like it duplicates information in the
Companies table. If you examine the way the database works, you’ll find some code

	 When to Break the Rules	 A29

A
rt

ic
le

 1

ZR1623252.indd 29 2/21/2007 1:08:42 AM

that copies the company information to the invoice information when you create a new
invoice. Again, this address information in the Invoice is point-in-time data. It is the
address that was current at the time the invoice was created. The company address
might change later, but we will always know where we mailed a particular invoice.

Note
You can fi nd the Housing Reservations sample application on the companion CD.

There’s yet another example in the Housing Reservations database. In this database, the
user creates room reservation requests that indicate an employee needs a specifi c type
of room over a range of dates. Some of this request information gets copied to the actual
reservation record at the time the housing manager confi rms the reservation. It is also
company policy to honor the quoted rate at the time the reservation is made so that the
manager who approves the reservation knows exactly what will be charged. (Likewise,
if this were a commercial hotel, you would expect to pay the rate quoted at the time of
the reservation, not the current rate at the time you check in three months later!) If you
look at the database design for the Housing Reservations database, shown in Figure
A1-13, you’ll see what looks like duplicate information in the Reservation Requests and
the Reservations tables. In this case, check-in and check-out information is copied from
Reservation Requests to Reservations when a reservation is confi rmed. Likewise, the
daily and weekly rates that are current at the time the reservation is made are copied to
the reservation by code in the application.

Figure A1-13  The design for the Housing Reservations database includes duplicate point-in-time 
pricing information in the Reservations table.

Note
You can fi nd the Housing Reservations sample application on the companion CD.

A
rticle 1

A30 Article 1  Designing Your Database Application

ZR1623252.indd 30 2/21/2007 1:08:43 AM

Note also that there’s a Total Charge field in the record that must be calculated by code
within the application. The application spends a little computing time for each change
to the records in the table to save processing time in reports that might need to work
with hundreds of rows. If you look behind the Reservations form in the Housing Reser-
vations database, you’ll find lots of code to accomplish both the rate copy and the total
calculation.

Creating Report Snapshot Data
One additional case for breaking the rules involves accumulating data for reporting.
As you can see if you study the examples in Chapter 16, “Advanced Report Design,” the
queries required to collect data for a complex report can be quite involved. If you have a
lot of data required for your report, running the query could take an unacceptably long
time, particularly if you need to run several large reports from the same complex collec-
tion of data. In this case, it’s acceptable to create temporary but “rule-breaking” tables
that you load once with the results of a complex query in order to run your reports. We
call these tables “snapshots” because they capture the results of a complex reporting
query for a single moment in time. You can look in Chapter 9, “Modifying Data with
Action Queries,” for some ideas about how to build action queries that save a complex
data result to a temporary table. If you use the resulting “snapshot” data from these
tables, you can run several complex reports without having to run long and complex
queries more than once. Chapter 4 shows you how to create a new database and tables,
and Chapter 5, “Modifying Your Table Design,” shows you how to make changes later if
you discover that you need to modify your design.

	 When to Break the Rules	 A31

A
rt

ic
le

 1

ZR1623252.indd 31 2/21/2007 1:08:43 AM

ZR1623252.indd 32 2/21/2007 1:08:44 AM

